
Technische Universität München

Fakultät für Informatik

Bachelorarbeit in Informatik

A framework for remote usability evaluation

on mobile devices

Daniel Bader

Technische Universität München

Fakultät für Informatik

Bachelorarbeit in Informatik

A framework for remote usability evaluation

on mobile devices

Ein Framework für Remote Usability

Evaluation auf mobilen Geräten

Author: Daniel Bader
Supervisor: Prof. Bernd Brügge, PhD.
Advisors: Dipl.-Inf. Univ. Dennis Pagano

Dipl.-Inf. Univ. Damir Ismailović

Submission Date: February 28, 2011

I assure the single handed composition of this bachelor’s thesis only sup-
ported by declared resources.

Date, Signature: .
(Daniel Bader)

Abstract

On mobile platforms, such as Google Android and Apple iOS, few software frameworks
are available that support remote usability evaluation methods. Nevertheless, remote
usability evaluation methods are an interesting area for research because they can be
partly automated, thereby making them very time- and cost-efficient. In this thesis we
propose a software, the muEvaluationFramework, that allows remote usability evaluation
on mobile platforms and supports automation in the capture, analysis and critique phases
of an usability evaluation. To demonstrate the abilities of the framework, we provide an
application-independent prototypical implementation for the Apple iOS platform.

I

Kurzfassung

Auf mobilen Plattformen, wie zum Beispiel Google Android und Apple iOS, sind kaum
Softwareframeworks verfügbar welche die Durchführung von Remote Usability Evalua-
tionen unterstützen. Methoden der Remote Usability Evaluation sind ein interessantes
Forschungsfeld da es möglich ist, sie teilweise zu automatisieren. Dadurch werden diese
Methoden sehr zeit- und kosteneffizient. In dieser Bachelorarbeit beschreiben wir eine
Softwarelösung, das muEvaluationFramework, welches die Durchführung von Remote Us-
ability Evaluationen auf mobilen Geräten unterstützt und eine Automatisierung in der
Aufzeichnungs-, der Analyse- und der Kritikphase einer Usability Evaluation ermöglicht.
Um die Fähigkeiten des Frameworks zu demonstrieren, stellen wir eine applikationsunab-
hängige prototypische Implementierung für Apple iOS zu Verfügung.

III

Acknowledgment

I am grateful to my supervisors Dennis Pagano and Damir Ismailović for their strong
support throughout the writing of my thesis.

V

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Outline . 2
1.3 Document conventions . 3
1.4 Foundations . 3

1.4.1 Usability of mobile applications . 3
1.4.2 Usability evaluation . 5
1.4.3 Common usability evaluation activities 5
1.4.4 Remote usability evaluation . 6
1.4.5 Automated usability testing . 7

2 Requirements specification 9
2.1 Objectives . 9
2.2 Related work . 9

2.2.1 MultiDevice RemUsine . 9
2.2.2 EvaHelper Framework . 10
2.2.3 Google Analytics for Mobile . 11
2.2.4 Summary . 12

2.3 Scenarios . 12
2.3.1 Problem scenario . 13
2.3.2 Visionary scenario . 14
2.3.3 Demo scenario . 16

2.4 Functional requirements . 17
2.4.1 Capture phase support . 18
2.4.2 Analysis phase support . 19
2.4.3 Critique phase support . 20

2.5 Nonfunctional requirements . 21
2.5.1 Usability . 21
2.5.2 Reliability . 22
2.5.3 Security . 22
2.5.4 Privacy . 22

VII

2.5.5 Performance . 22
2.5.6 Supportability . 22
2.5.7 Implementation requirements . 22

2.6 System models . 23
2.6.1 Use case model . 23
2.6.2 Object model . 25
2.6.3 Dynamic model . 37

2.7 User interface . 41

3 System design 47
3.1 Design goals . 47
3.2 Subsystem decomposition . 47

3.2.1 Proposed software architecture . 48
3.2.2 Capture subsystem . 49
3.2.3 Analysis subsystem . 51
3.2.4 Critique subsystem . 51

3.3 Hardware/software mapping . 52
3.4 Persistent data management . 54

4 Object design 55
4.1 Interface documentation guidelines . 55
4.2 Subsystems . 55

4.2.1 Capture subsystem . 56
4.2.2 Analysis subsystem . 64
4.2.3 Critique subsystem . 67

5 Prototypical implementation 71
5.1 Overview . 71
5.2 Capture support . 71
5.3 Analysis support . 73
5.4 Critique support . 74

6 Future work 77
6.1 Evaluation of a real product . 77
6.2 Web-based automated usability evaluation 77
6.3 Google Android support . 78

7 Conclusion 79

Bibliography 80

List of Figures

1.1 Five common attributes of usability (UML class diagram) 4
1.2 Common activities during usability evaluation (UML activity diagram) . . 6

2.1 Common activities during usability evaluation (UML activity diagram) . . 18
2.2 The main use cases for the actors Developer, TestUser and HostApplica-

tion (UML use case diagram) . 23
2.3 The PreviewEvents use case (UML use case diagram) 24
2.4 Specialization of use case ControlSession (UML use case diagram) 25
2.5 Relationships of the sub-models (UML package diagram) 25
2.6 High level overview of the participating entities of the capture phase (UML

class diagram) . 26
2.7 The life cycle of a usability evaluation session (UML sequence diagram) . . 27
2.8 Influencing factors on usability data (UML class diagram) 28
2.9 The relationship between SensorTargets and UsabilityData (UML class

diagram) . 28
2.10 Sensors and SensorTargets (UML class diagram) 29
2.11 SensorTarget specializations (UML class diagram) 29
2.12 Sensor specializations (UML class diagram) 30
2.13 Event as a storable representation of usability data (UML class diagram) . 30
2.14 Specializations of the Event object (UML class diagram) 31
2.15 User interfaces for the capture phase (UML class diagram) 32
2.16 Overview of the analysis phase object model (UML class diagram) 32
2.17 InterpretationResult specializations (UML class diagram) 33
2.18 Interpreter types (UML class diagram) . 34
2.19 High-level object model of the critique phase (UML class diagram) 35
2.20 Report document model and Section specializations (UML class diagram) 35
2.21 Report configuration (UML class diagram) 36
2.22 Report generation overview (UML class diagram) 37
2.23 High-level dynamic model of the framework (UML activity diagram) 37
2.24 Capture phase (UML activity diagram) . 38
2.25 Event detection example (UML sequence diagram) 38

IX

2.26 Analysis phase (UML activity diagram) . 39
2.27 Interpreter execution (UML activity diagram) 40
2.28 Report generation (UML activity diagram) 41
2.29 Section generation (UML activity diagram) 41
2.30 A finished interactive report (Mockup screenshot) 43
2.31 Event log user interface in an early version of the prototype (Screenshot) . 44
2.32 Session control user interface during the capture phase (Mockup screenshot) 44
2.33 Report configuration user interface (Mockup screenshot) 45
2.34 A touch heatmap section (Mockup screenshot) 45

3.1 Relationship of the main subsystems (UML package diagram) 48
3.2 Overview of the main subsystems (UML package diagram) 49
3.3 The Capture subsystem (UML package diagram) 50
3.4 The newly identified objects for the Communication subsystem (UML class

diagram) . 50
3.5 The Analysis subsystem (UML package diagram) 51
3.6 The Critique subsystem (UML package diagram) 52
3.7 Deployment of the framework and its separation into components (UML

deployment diagram) . 53

4.1 Object design for the CaptureLibrary subsystem 56
4.2 UIWindow sendEvent: behavior before method interception is performed . 60
4.3 UIWindow sendEvent: behavior after method interception is performed . . 60
4.4 The Communication subsystem implementation for the CaptureLibrary

(UML class diagram) . 62
4.5 The Communication subsystem implementation for the CaptureServer (UML

class diagram) . 63
4.6 Object design for the CaptureServer subsystem 63
4.7 Objects of the AnalysisController subsystem (UML class diagram) . . . 64
4.8 Objects of the Storage subsystem (UML class diagram) 65
4.9 Objects of the Interpretation subsystem (UML class diagram) 65
4.10 Interpreters as experts on a blackboard (UML class diagram) 66

5.1 A finished report document (I) (Prototype screenshot) 75
5.2 A finished report document (II) (Prototype screenshot) 76

1 Introduction

On mobile devices, such as smartphones or tablet computers, good software usability
is especially important. This is because users may interact with their devices under
difficult and distracting conditions, for example in noisy environments or at low light
levels. Although good usability is vital on these platforms it is still difficult to sample
and collect data about user interactions. This also affects popular platforms like the
Apple iPhone. We believe that is mainly the case because tool support for collecting and
analyzing usability data is not very good or even nonexistent on most mobile platforms.

However, there is room to improve this situation by taking technologies and ideas from
another area of software development, namely performance analysis, and applying them
to the context of usability testing. Tools like profilers are readily available to the modern
mobile application developer and allow for structured examination and analysis of ap-
plication performance using software-based sensors. With similar techniques interaction
patterns can be captured, and in a further step, be examined using heuristic algorithms
that find and point out usability problems. This is called automated usability evalua-
tion. If we also remove the need for human evaluation experts to be present during an
evaluation session then the technique becomes automated remote usability evaluation.

This thesis describes a framework for automated remote usability evaluation on mobile
devices. We provide a sample implementation for the Apple iOS platform and use it with
the two open-source applications Wordpress for iOS and PlainNote.

1.1 Problem statement

Software usability is important for every application on every platform and usually tools
and methodologies exist to help developers improve the usability of their software. How-
ever, there is a lack of software support for usability evaluation on mobile platforms [9,23].
Thus, usability evaluations on these platforms are often problematic and involve compli-
cated laboratory setups to film screen contents and user interactions [15].

The users are also removed from their natural environment during a laboratory evaluation
and thus do not experience many of the distractions (such as bad lighting, movement or
noise) that are common in a mobile context. This makes evaluation results less valid in
real life usage scenarios [22].

1

CHAPTER 1. INTRODUCTION

Several approaches have been taken to mitigate these problems. For example, remote us-
ability evaluation for mobile devices allows to perform usability evaluation outside labora-
tories [27]. But these evaluation methods are not available for all mobile device platforms
and the methods focus on older or by now deprecated platforms.

Especially on the rather novel class of touch-enabled devices, like the Apple iPhone, there
still is no proper software support for conducting remote usability evaluations. There-
fore, we propose a framework for remote usability evaluation on mobile platforms called
muEvaluationFramework (“mobile usability Evaluation Framework”). The framework sup-
ports logging and analyzing usability data in both traditional laboratory-based evaluations
and field tests.

1.2 Outline

Chapter 2 provides an overview of the application domain of the framework and in-
troduces three existing technologies for remote usability evaluation. To document the
requirements elicitation phase, the chapter describes the high-level functional and non-
functional requirements. In addition, the chapter also describes the analysis model in
the form of use cases, object models and dynamic models for the framework. It contains
the complete functional specification and therefore it can be seen as the Requirements
Analysis Document (RAD) for the framework.

Chapter 3 supplies an overview of framework’s software architecture and documents
the system design model with the subsystem decomposition, hardware/software mapping
and information about persistent data management. This chapter represents the System
Design Document (SDD).

Chapter 4 is organized by the packages documented in Chapter 3 and is considered to
be the Object Design Document (ODD).

Chapter 5 describes the prototypical implementation of the framework that was devel-
oped during the writing of the thesis.

Chapter 6 gives several ideas for future work on the framework.

Chapter 7 shows conclusions drawn from the development of the framework.

2

1.3. DOCUMENT CONVENTIONS

1.3 Document conventions

The following conventions are used throughout the document:

Typographical conventions

• The names of system and modeling elements such as classes, packages, attributes,
and methods are written in typewriter font.

• Important parts of the text are highlighted by using italics.

Notation and diagrams

• We use the Unified Modeling Language (UML) version 2.1.2 for all diagrams of the
thesis [26].

1.4 Foundations

This section introduces the terms and concepts that are required to understand the ap-
plication domain of the muEvaluationFramework. First, we define the term usability and
explain how it is used in the context of mobile applications. Second, we briefly describe six
state-of-the-art approaches towards usability evaluation. Third, we provide an overview
of common activities in usability evaluations that we use as an overall structure for the
thesis. Fourth, we introduce remote usability evaluation and two ways to perform it.
Finally, we summarize the advantages and disadvantages of automated usability testing.

1.4.1 Usability of mobile applications

While the importance of usability is now widely recognized, there remains a confusion
regarding the exact meaning of the term [11]. Generally, usability is an indicator for the
ease of use and the acceptability of a system [20]. Researchers frequently define usability
as the sum of five common attributes [8, 24,32] (Figure 1.1):

3

CHAPTER 1. INTRODUCTION

Usabil i ty

Learnabil i ty Efficiency Satisfaction Errors Memorabi l i ty

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 1.1: Five common attributes of usability (UML class diagram)

• Learnability : how easily a first time user without prior knowledge operates an in-
terface;

• Efficiency : the performance of experienced users who already have knowledge about
the interface;

• Memorability : how easily previous users of an application can recall how to operate
it after some time has passed;

• Errors : the number of errors a user makes and how easily they can recover from an
error; and

• Satisfaction: how pleasant it is for users to operate an interface.

So far, the term usability is defined, but how is mobile usability different from it? Zhang
and Adipat identified the following contributing factors that affect mobile usability [32]:

• Mobile context : the fact that users are distracted by the surrounding environment,
e.g. by noise, movement, or light level;

• Connectivity : many mobile devices do not have an internet connection all the time
and most have considerably slower network speeds than stationary devices;

• Small screen size: small screens are harder to read and require different aesthetic
decisions;

• Different display resolutions: a number of differing screen sizes and display resolu-
tions exist in the mobile market;

• Limited processing power : compared to stationary devices mobile devices are a lot
slower (this may prevent, for example, the implementation of graphically demanding
features); and

• Restrictive data entry methods: small or virtual (on-screen) keyboards make it dif-
ficult to quickly enter data and may increase the error rate.

4

1.4. FOUNDATIONS

1.4.2 Usability evaluation

Usability evaluation helps to determine and improve the usability of an application by
taking a structured and scientific approach towards the problem. Common usability evalu-
ation techniques can be divided into two groups: inspection methods and test methods [20].

Inspection methods do not require the presence of a user when conducting the evaluation.
Instead, they are “a set of methods for identifying usability problems and improving the
usability of an interface design by checking it against established standards” [20].

As described by Holzinger [20], the three most common inspection methods are:

• Heuristic evaluation: a usability expert judges the user interface according to several
established guidelines;

• Cognitive walkthrough: a step-by-step simulation of a hypothetical user’s behavior
when interacting with the interface. This method is performed by a skilled analyst
and concentrates on cognitive issues; and

• Action analysis : similar to the cognitive walkthrough but focuses less on cognitive
issues and analyzes action sequences and statistics such as click counts instead.

Test methods on the other hand are performed in the presence of real users and are
fundamental to usability evaluation [28]. Only real users can provide direct information
about how people use systems and what their exact problems with a specific interface
are [20]. According to Holzinger [20], the three most common usability test methods are:

• Thinking aloud : a test users uses “the system for a given set of tasks while being
asked to ‘think out loud’" [24]. This method also provides an insight into why users
are performing an action;

• Field observation: a simple method where users are watched in their workplace as
unobtrusively as possible; and

• Questionnaires : collect opinions regarding an interface by directly querying the
users. This can also be done in the form of an interview.

1.4.3 Common usability evaluation activities

According to Ivory and Hearst [21], there is a common sequence of activities that are
performed in a usability evaluation; they are called Capture, Analysis, and Critique (see
Figure 1.2).

5

CHAPTER 1. INTRODUCTION

Common usabil i ty evaluation activit ies

Capture Analysis Critique

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 1.2: Common activities during usability evaluation (UML activity diagram)

Each of the three activities includes a different set of actions:

• During the Capture phase usability data are gathered and stored.

• During Analysis the data from the previous phase are interpreted and examined for
problems in the usability.

• In the final Critique phase solutions or improvements to detected usability problems
are suggested.

The following exemplary flow of events shows the three activities more concretely. Here,
a usability evaluation was performed with the field observation test method described in
Section 1.4.2:

1. The usability test is performed in an evaluation session during which a test user in-
teracts with an application. Every interaction of the user is recorded by an observer
and then stored in a session log or journal. (Capture)

2. After the session, an evaluator interprets the raw data from the session journal
and generates knowledge about the application’s usability. This knowledge may
include statistical data, helpful visualizations of the captured interactions as well as
problems detected in the usability. (Analysis)

3. The evaluator creates a report that summarizes the knowledge from the analysis
phase. The report is used by a developer to improve the application’s usability.
(Critique)

1.4.4 Remote usability evaluation

Traditional usability evaluation methods require evaluators to stay close to the test users
when performing an evaluation. But what if similar results could be achieved even when
users and evaluators were separated? Remote usability evaluation is based on this idea.
That is, evaluators and users are separated in space and possibly time during an evalua-
tion [18].

6

1.4. FOUNDATIONS

Remote evaluation is becoming more and more popular because it offers several advantages
compared to other, laboratory-based evaluation methods. For example, it allows the
collection of usability data in real usage situations or locations where users are difficult
to assess by direct observation [27]. Furthermore, users behave more naturally when the
evaluation is conducted in their familiar environment [27].

Available remote evaluation methods can be grouped into the two categories of syn-
chronous and asynchronous methods. Andreasen et al. summarize the difference between
the two categories as follows:

“With a synchronous method, the evaluator is separated from the user spa-
tially, but not temporally. When conducting an asynchronous test, the evalu-
ator is separated from the user both temporally and spatially.” [1]

1.4.5 Automated usability testing

Automated usability testing tries to remedy some of the disadvantages and problems asso-
ciated with established usability evaluation methods. For example, traditional evaluation
methods are often not systematic and predictable enough [21]. One solution for this prob-
lem is to automate some of the common usability activities described in Section 1.4.3 [21].
Au et al. [8] also conclude, that it would be a “logical solution [. . .] to automate as many
aspects of usability testing as possible” because traditional evaluation methods carry sev-
eral disadvantages, for example high complexity and resource inefficiency.

Automated usability evaluation methods, on the other hand, can be very cost- and time-
efficient. Automation leads to several potential benefits, such as decreased costs, increased
consistency between results, and a reduced need for evaluation expertise [21]. Because
companies are still often reluctant to employ the traditional, cost-intensive usability eval-
uation methods they have a disadvantage in the market against companies that make use
of remote evaluation. Automation can help to boost the acceptance of usability evaluation
and leads to better products and better market performances [8].

Based on the work of Balbo [10], Ivory and Hearst [21] use a taxonomy that discriminates
between four approaches towards automated usability testing. The taxonomy is closely
linked to the common usability evaluation activities described in Section 1.4.3:

• No automation: all steps of the evaluation method are performed by the evaluator,
i.e. there is no automation at all;

• Automatic capture: software automatically logs usability data such as interface us-
age, user speech, or visual data;

• Automatic analysis : software identifies usability problems automatically by using
logged data; and

7

CHAPTER 1. INTRODUCTION

• Automatic critique: software points at improvements and fully automates analysis.

While automated usability evaluation is a solution to many problems in the field, it
must be noted that automation might miss important subjective information such as
preferences and misconceptions of the users [21]. To mitigate these issues, automated
usability evaluation should be used in combination with traditional evaluation methods,
such as heuristic evaluation or questionnaires. These traditional methods are described
in Section 1.4.2.

8

2 Requirements specification

In this chapter we describe the muEvaluationFramework in terms of external behavior.
This includes a use case model to present the functionalities of the framework, an object
model that explains the application domain concepts, a dynamic model that shows the
framework’s behavior in terms of interactions, and the nonfunctional requirements that
represent user-visible aspects of the framework that are not directly related with the
functional behavior.

2.1 Objectives

As mentioned before it is the goal of this thesis to develop a framework that allows a
developer to monitor and analyze the usability of mobile applications. The framework
should be capable of monitoring the activity of the user and be able to capture usability
related data. The information collected during this step should be analyzed and finally
reported to the developer in an understandable and well-readable fashion.

2.2 Related work

In this section we present three existing frameworks that support remote usability eval-
uation for mobile devices. The first framework is called MultiDevice REMUsine. It is
used to analyze the usability of Windows CE applications by comparing user behavior to
a planned task model. The second project is the EvaHelper Framework that helps devel-
opers to analyze the usability of applications on the Google Android platform. The third
software is Google Analytics for Mobile which extends Google’s existing user tracking
technology for web pages towards the Google Android and Apple iOS mobile platforms.

2.2.1 MultiDevice RemUsine

Paternò et al. describe a framework called MultiDevice RemUsine for the remote evalu-
ation of mobile applications on the Microsoft Windows CE platform [27]. The solution

9

CHAPTER 2. REQUIREMENTS SPECIFICATION

focuses on the collection of contextual information, that is, about the surrounding envi-
ronment of the users. The MultiDevice RemUsine framework consists of a logging tool
that collects usability data (capture), as well as a software that analyzes the collected
data and provides an interactive view of the results (analysis and critique).

The logging tool, called Mobile Logger, supports the detection of user interactions within
mobile applications and also the detection of environmental conditions that might affect
the user’s activity. Such conditions are, for example, noise in the environment or the
battery level of the device. The logging component stores usability data as events and
supports four event classes: contextual events that are created as a consequence of updated
contextual information; intention events that allow users to indicate that they changed
the target task; system events that are generated by the system as a response to user ac-
tions; and interaction events which are further specialized into categories such as clicking,
selecting, and scrolling. All event types are collected by tracking the internal messages
that are sent to the application by the Windows CE operating system. Because numerous
message types exist, the logging functionality is distributed across several modules that
track the activity of the user in one specific aspect.

To analyze the collected usability data, the framework uses an internal task model that
describes how a user should complete tasks in the application. The task model has to be
provided by a developer in a preparation step. The collected events are then analyzed by
comparing the planned user behavior (the task model) and actual user behavior (the se-
quence of events that the user performed). This allows the framework to detect deviations
from the internal task model; these deviations can then be investigated by a developer
to see if there is a problem with the application’s usability or if the task model must be
updated to accept the new user behavior.

2.2.2 EvaHelper Framework

Balagtas-Fernandez and Hussmann found that software-supported usability testing on
mobile devices is often troublesome because the devices have many restrictions and soft-
ware tools for usability testing are missing. They describe a framework, called EvaHelper,
which provides tool-support for usability evaluations on the Google Android platform [9].

The process of conducting a usability evaluation with the EvaHelper framework is struc-
tured by the authors into four common activities that are performed as consecutive phases:
First, preparation, where the developer sets up the application for the logging of usability
data. Second, collection, where usability data about the application are collected. Third,
extraction, where the collected data are made available for interpretation. And fourth,
analysis, where the extracted data are interpreted to detect usability problems in the
application. The EvaHelper framework consists of several tools which support each of the
activities.

10

2.2. RELATED WORK

Usability data are made available to the framework by calling log functions in the applica-
tion that should be analyzed. These source code modifications must be performed by the
developer, but the authors also propose a software tool which automatically inserts the
necessary code into the application. Once this preparation step is complete, the framework
is able to collect usability data. The data are stored in a text file as comma-separated
values (CSV).

The framework also performs an analysis of the collected data by generating a graph that
visualizes the user interactions. Each user interface (UI) element that was accessed by the
user is represented as a node in this graph. The UI elements are then grouped by assigning
them to containers which represent the screens or views of the application. Interactions or
transitions are represented by the edges of the graph. This approach to visualization allows
evaluators to retrieve information about an application’s usability in the learnability,
efficiency, memorability, effectiveness, error rate and simplicity dimensions.

While its approach towards automated usability evaluation is generally very nice, we
think that the the EvaHelper framework could be improved in two ways. First, it is
possible to detect user interactions automatically by using the reflection abilities of modern
programming languages. This means that no additional software tool that inserts logging
code into the application would be needed. Hence, the preparation step would become
much easier for the developer because no source code must be changed. Second, we believe
that on today’s graphically-rich mobile UIs, it is important to collect user interactions
graphically, for example as screenshots or video sequences. We believe that this yields
valuable insights to the usability of an application, and especially so in an asynchronous
remote evaluation setting.

2.2.3 Google Analytics for Mobile

Google Analytics allows a webmaster to track user activity on standard web pages. This
is done by adding the Analytics JavaScript code to existing web pages. The embedded
code, which is provided by Google Inc., collects information about actions that the users
perform on the web page, for example navigating to a different web page or interacting
with elements within one page. This tracking data are then sent to Google’s servers where
they are analyzed and a report is prepared that can be browsed by the webmaster.

Google Analytics for Mobile is an extension of the Google Analytics framework for web
pages, and similarly, it allows developers to track user interactions within mobile ap-
plications [17]. The Google Analytics for Mobile framework is available for the Google
Android and the Apple iOS platforms. It consists of two parts: First, a native software
development kit (SDK) that replaces the JavaScript code of the web-based version. And
second, an underlying web service, which is provided by Google free of charge, that stores
and analyzes the collected data.

11

CHAPTER 2. REQUIREMENTS SPECIFICATION

Before data can be collected, developers must setup an account with Google Inc. and must
then link the application they want to analyze against a library from the Analytics SDK.
Data collection or tracking is performed in a similar way to Google Analytics for web
pages, but is less automated, i.e. developers have to trigger named events and pageviews
(which provide a mechanism for grouping events) at appropriate times by calling a special
function in the Analytics library. On the Google Android platform, the framework can also
track clicks on advertisements that are embedded into the application. The collected data
are stored internally into a SQLite1 database and are wirelessly transmitted to Google’s
web service. Data transmission is performed in batches and developers can choose when
the data should be dispatched.

The framework provides a web application which summarizes the collected data from all
users and presents it to the developers; this data processing step can include the collected
data of thousands of users. Developers have access to several tools, such as a graphing tool
and detail reports, which they can use to inform themselves about several variables: how
often the application is launched by the users (visits), how long users interact with the
application (session length), the percentage of users that leave the application very quickly
and never return (bounce rate) and the number of unique users who use an application
(unique visitors). The data are displayed anonymously, that is, developers cannot get
information about individual users.

2.2.4 Summary

We examined three existing approaches towards automated remote usability evaluation
on mobile devices in the related work section. While the presented solutions are very
satisfying in some aspects, we think that there is a distinct lack of such systems for
the Apple iOS platform even though it is very popular at the moment. Furthermore,
existing systems ignore the graphically-rich user interfaces of modern, touch-based mobile
platforms and provide no support to graphically record user interactions, for example, as
screenshots or video sequences.

2.3 Scenarios

In this section we present three usage scenarios for the muEvaluationFramework: First, a
problem scenario that documents the issues and pitfalls with current approaches towards
usability evaluation on mobile platforms. Second, a visionary scenario that includes a

1SQLite is a lightweight relational database that implements most of the SQL standard. It is often used
in the software of mobile devices [19].

12

2.3. SCENARIOS

view of how usability evaluation on mobile platforms could be performed in the future.
And third, a demo scenario that shows how the muEvaluationFramework helps a developer
to conduct an usability evaluation.

2.3.1 Problem scenario

Scenario name Problem scenario
Participating

actor instances

John and Clara (developers); Alice, Marcus, and Mona (test users)

Flow of events: 1. The mobile application developer John is working on the weMake-
Words application for the Apple iOS platform. The aim of the soft-
ware is to playfully teach Chinese characters to children aged four
to eight. John performs an usability evaluation of the weMakeWords
application using an iPod Touch device.

2. After adding a feature that makes a new character available for learn-
ing, John notices that the five year old user Alice has trouble playing
through a full session of the game. The application seems to freeze
before Alice can finish the session. This never happens when John
interacts with the application. John asks Alice about the problem
she is having with the program. But, because of her age, Alice fails
to explain the steps she took before the problem appeared.

3. John decides to monitor Alice’s interactions with the game in order
to find out what leads to the problem. While Alice is using weMake-
Words once more, John sits besides her and takes written notes of
her actions.

4. Alice is shifting around a lot while interacting with the iPod Touch
mobile device and thus it is hard for John to take proper notes of all
interactions. Later looking at them, it is hard for him to remember
all steps that Alice performed and he fails to reproduce the problem
that came up during the session.

5. John comes up with a new idea and tries to record Alice’s interactions
by using a video camera. The resulting video again is not very useful,
as Alice is obstructing the camera view with her fingers. And she
becomes upset because she cannot freely move around with the device
in her hands while the screen is being filmed.

6. Sadly, the video of the recorded session also proves inconclusive be-
cause the issue did not appear this time. John has now been working
effortlessly for about two hours. He resolves to filming more sessions

13

CHAPTER 2. REQUIREMENTS SPECIFICATION

and invites two other children, Marcus and Mona, to interact with
the application in order to reproduce the freezing issue. To take good
care of the bigger test group he requires the help of another software
developer, Clara.

7. After spending several hours recording the children’s interactions to-
gether with Clara, John starts watching the recorded videos and
searches them for occurrences of the problem.

8. Feeling very exhausted, he finally manages to fix the fault around
midnight after a long and dull evening watching recorded interac-
tions.

Problems in this scenario:

1. Recording user interactions by hand is tedious for John, even more so on mobile
platforms. The quality of the monitoring results is not very good, because the small
screens get obstructed easily and taking notes by hand is slow.

2. Conducting a larger number of usability evaluation sessions becomes very work
intensive. John cannot do this by himself.

3. He has to search for potential problem areas by hand. It is difficult for him to browse
many recorded sessions in order to find a single issue. Application freezes could be
detected easily by a simple heuristic that scans for screen updates, for example.

4. In order to allow for proper monitoring of her interactions, Alice is not allowed to
use the software the way she would in an unrestricted situation, that is, she is forced
to be still while playing with the program so that the screen can be filmed or notes
can be taken.

2.3.2 Visionary scenario

Scenario name Visionary scenario
Participating

actor instances

John (developer)

Flow of events: 1. The developer John wants to test a new version of the Wordpress
for iOS application with a test group of 40 individuals. As a free-
lance developer he has only limited testing resources available, so he
goes online and decides to acquire application testers via the web-
site www.evaluate-my-app.com. He makes a request to the system
for 40 test users and specifies their required properties: they should

14

2.3. SCENARIOS

be 20 to 30 years old; half of them should be male, half of them fe-
male; they should all own iPhone 4 devices, and one third of them
should be novice users. Additionally, John wants the testing session
to be less expensive than 500 EUR. The system chooses the testers
automatically according to their profile and previous work.

2. All testers are guided through the process of installing the applica-
tion. John gives each of them a common task that stresses the newly
implemented Delete weblog posting feature.

3. The testers begin working on the tasks they were given. The moni-
toring framework records all the user interactions in the test group.
It generates an interactive report from the cumulative data.

4. The report contains:

• a timeline of events for each of the testers; including touch
events, device motion and shake gestures

• visual and audio recordings of the interactions for think-aloud
protocols (Screen touches are indicated via graphical effects)

• the think-aloud audio recordings are transcribed automatically
to text form

• the think-aloud audio recordings are searched for user exclama-
tions (“Oh no!”, “What happened?”, etc.) that hint at problems

• a video recording of the testers face via the built-in front camera
that is scanned for strong emotions (being upset, surprise, etc.)

• a graphical representation of the tester’s navigation through the
applications’s view hierarchy

• a list of the most used views and user interface (UI) elements

• a rating of the applications’s performance and visual fluidity

• a list of to small or hard to read text elements

• a list of buttons or UI elements that were missed by users several
times. This is hinting at the elements being to small to use well.

• a list of areas that might be hard to read for people with disabil-
ities, for example people with colorblindness. Also pointed out
are the UI elements that do not have good accessibility metadata
(iOS has support for users with impaired vision, for example)

• eye-tracking data that graphically shows where the user was
looking at; these data are either recorded via an external system
or inferred from the front camera video feed

15

CHAPTER 2. REQUIREMENTS SPECIFICATION

• a reachability graph of all the views; hints where shortcuts might
be needed

• a list of occasions where identical information was repeatedly
entered by the user; this hints at areas where the data might
be simply entered by the application itself to minimize typing
required by the user

• a list of interactions that did not cause visual feedback when
the user performed them

• a list of “UI design rules of thumb”-violations, e.g. the applica-
tion is using to many different fonts or using inconsistent colors

5. Using the report John can now more easily identify problem areas in
the usability of his application. John has saved several days of work
because he did not have to do the usability evaluation on his own.

2.3.3 Demo scenario

Scenario name Demo scenario
Participating

actor instances

John (developer); Jack, Jill, and Jane (test users)

Flow of events: 1. Mobile application developer John is working on Wordpress for iOS,
an editing software for weblogs. He wants to know how a group of
testers, Jack, Jill and Jane, are interacting with the software when
given the task of publishing a new posting to a weblog.

2. John includes the muEvaluationFramework framework into the appli-
cation, making only minor changes to the project source code. For
example, he triggers events when key locations in the interface code
are reached by using simple function calls to mark them: [monitor
beginEvent: @”Edit blog posting"].

3. After that, he starts the MobileMonitor application, launches the
Wordpress for iOS application on three iPod Touch devices and gives
them to the testers. They were each given a written statement with
the task of publishing a new blog posting. Also, they were asked to
think aloud about their actions while interacting with the application.

4. While the testers are working, the muEvaluationFramework records
user interactions with the Wordpress for iOS application and for-
wards them to an instance of the Mobile Monitor application running

16

2.4. FUNCTIONAL REQUIREMENTS

on John’s computer. Screen contents of the devices and the voices of
the testers are also recorded and forwarded.

5. After Jack, Jill and Jane finish their assigned tasks, John uses the
Report Generator software on the data recorded by the framework.
A human-readable report is generated and John can view it using a
web browser.

6. The report includes a timeline of the testers interactions with the
Wordpress for iOS application. It includes generic events such as
Button “Publish” was pressed or User entered view “Write posting”
and also custom events that were defined by John: for example,
User executes a shake gesture or User selects category “Work”. John
can choose to exclude certain events from the timeline in order to
make the stream of events less cluttered. Furthermore, the report
includes summarizing information concerning the whole interaction.
For example, a list of the most often generated events or the most
often used views as well as a heat map for each view that shows where
the user touched the screen.

7. John now uses the information from the report to improve usability
issues in the Wordpress for iOS application. Also, he finds out about
hot spots in the interaction; that is, user interface elements that were
accessed frequently by Jack, Jill and Jane. Using this data he can
later decide efficiently on what area of the application he should work
on next in order to improve usability where it is most important.

2.4 Functional requirements

In this section we describe how users and any external systems interact with the mu-

EvaluationFramework. The functional requirements are independent of the framework’s
implementation and follow the structure of the three common usability activities described
in Section 1.4.3: First, the capture phase, during which usability data are collected. Sec-
ond, the analysis phase, where the collected data are interpreted and examined for usabil-
ity problems. And third, the critique phase, where improvements to the detected usability
problems are suggested.

17

CHAPTER 2. REQUIREMENTS SPECIFICATION

Common usabil i ty evaluation activit ies

Capture Analysis Critique

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.1: Common activities during usability evaluation (UML activity diagram)

2.4.1 Capture phase support

Usability data collection in sessions During the capture phase, the muEvaluation-

Framework should gather and store usability data belonging to a specific application.
This application is called the host-application. Usability data should be collected only
in the course of an evaluation session. An evaluation session should be initiated by the
developer and exactly one test user should be able to participate in each session. The us-
ability data collection during a session should be performed by a number of software-based
sensors that attach to the host-application.

Session control An evaluation session should be started and stopped by the developer.
The developer should be able to control which data are collected by selecting a set of active
sensors before the evaluation session starts. As soon as the developer stops the evaluation
session, the capture phase should end and the framework should start the analysis phase.

Support for multiple usability data sources During the evaluation session, the active
sensors should continuously observe a number of sensor targets in the host-application.
Such sensor targets should be function calls or variables in the address space of the host-
application that are monitored for state changes (for example, a function is called or the
value of a variable changes). As output, sensors should generate events to store their
findings. A single event should contain a description of the state change of the sensor
target and the time at which the change occurred. The muEvaluationFramework should
support the following event types:

• User-input events : direct input actions by the test user, such as touch gestures (e.g.
screen taps), or text entry.

• User-interface events : events related to the user interface (UI) of the host-application,
for example, the selection of UI widgets (e.g. button presses), or changes in the on-
screen content. This is different from user-input events because user-interface events

18

2.4. FUNCTIONAL REQUIREMENTS

are events that lie completely within the functionality of the host-application, i.e.
a test user might touch the screen of the device (this generates a user input event)
but the UI of the host-application might not register the touch and hence no user
interface event is generated.

• Device sensor events: modern mobile devices have a number of built-in sensors (e.g.
accelerometers, light sensors, video cameras and microphones) that can be used to
track the test user’s behavior. Device sensor events should encapsulate the data
produced by these sensors (e.g. audio samples or video frames).

• Application events : internal state changes in the host-application. For example,
launch and termination, bringing the host-application to the foreground or the back-
ground, as well as exceptions that were raised by the underlying runtime environ-
ment.

• Custom events : events that are completely under the control of the developer. Cus-
tom events should be raisable by calling special functions in the host-application’s
source code.

Live preview for collected events While an evaluation session is active the developer
should see the events as they are recorded by the framework. This helps to ensure that
events are successfully captured and allows to developer to see what the test user is doing
in a synchronous remote evaluation setting.

2.4.2 Analysis phase support

Usability data interpretation During analysis the framework should interpret the us-
ability data, e.g. the events, that were collected in the capture phase. To do so, several
interpreter algorithms should process the events and generate interpretation results that
should be used in the subsequent critique phase. The interpretation results should either
describe a particular usability problem in the host-application or they should contain
summarizing and statistical information collected during the evaluation session. When
all interpreters have completed their work, the analysis phase should end and the frame-
work should advance to the critique phase.

Usability problem detection The framework should be able to detect violations against
the iOS Human Interface Guidelines (HIG) that are provided by Apple Inc. [6]. Because
many of the HIG are diffuse and hard to quantify with machine verifiable rules, the
framework must only detect when a host-application violates a quantifiable guideline
such as:

19

CHAPTER 2. REQUIREMENTS SPECIFICATION

• “Display a hint in the text field if it helps users understand its purpose,
such as ‘Name’ or ‘Address.’ A text field can display such placeholder text when
there is no other text in the field.” [6]; or

• “Maintain a hit target area of at least 44 x 44 pixels for each toolbar item.

If you crowd toolbar items too closely together, people have difficulty tapping the
one they want.” [6]

Usability summary generation The summarizing and statistical interpretation results
that should be produced by the framework are:

• overview information regarding the evaluation session, for example, the session’s
duration or the total number of events;

• a list of the most used views and UI widgets that is sorted by the time spent on
each element;

• heat maps that should graphically show the touch events for each view in the host-
application;

• a representation of the test user’s navigation path through the host-application’s
views

2.4.3 Critique phase support

Report generation As final output, the muEvaluationFramework should generate a re-
port that summarizes the interpretation results that were found in the analysis phase.
For each usability issue that was found, the report should recommend changes to the
host-application that mitigate the issue. The developer should be able to use the report
to achieve two goals: First, to understand and to reproduce any actions the test user
has performed during the evaluation session. And second, to improve the usability of
the host-application by making the changes that were recommended in the report. The
developer should be able to view the report using a standard web browser. The report
should be structured into sections and should offer interactive elements (such as dynam-
ically filterable event logs). Where applicable, the report should include media such as
images, videos, or audio files.

Report configuration Developers should be able to configure the report in two ways:
They should be able to choose the directory where the report is stored; and they should
be able to choose one or more sections that are included in the report. Reports should
support the following section types:

20

2.5. NONFUNCTIONAL REQUIREMENTS

• an overview section that lists general information about the evaluation session, e.g.
its duration or the number of recorded events;

• a graphical event log or timeline that can be interactively filtered by event type;

• a touch heat map section that graphically shows user interaction hot spots for each
view in the host-application; and

• a section that shows how the test user navigated through the views of the host-
application.

• a section that shows the Human Interface Guidelines [6] violations that were de-
tected.

2.5 Nonfunctional requirements

After the functional requirements of the muEvaluationFramework are defined, we specify
a number of additional nonfunctional requirements. These requirements are user-visible
aspects of the framework that are not directly related with the functional behavior.

2.5.1 Usability

Minimal setup work Only minimal setup work should be required from the developer
to perform a usability evaluation on an existing host-application. The framework should
only require two modifications to an existing host-application: first, linking the host-
application against a single static library; and second, calling one method in the host-
application’s source code.

User interface usability The user interface used for report configuration should be ac-
cessible within five seconds after a session was recorded in order to not interrupt the
workflow of the developer. The developer should be able to start and stop an evaluation
session with a simple graphical user interface. The starting and stopping of a session
should be possible by performing just one mouse click. A graphical user interface should
also be available to configure and generate a report. The report should be pre-configured
so that the developer can generate a report with a single click.

Wireless communication with the mobile device The framework should communicate
with the mobile device over a wireless connection. This is preferable to a tethered con-
nection because it allows test users to move the mobile device around freely and not feel
restricted by wires.

21

CHAPTER 2. REQUIREMENTS SPECIFICATION

2.5.2 Reliability

In order to provide meaningful results, the framework should not make the host-application
behave differently. Any side effects on the host-application should therefore be minimized
and influence on the test user’s behavior should be as low as possible.

2.5.3 Security

The framework may not compromise the security of the host-application. Existing safety
measures of the operating system, such as application sandboxing, should not be affected.

2.5.4 Privacy

Recorded user interactions and other events should only be accessible to an authorized
developer.

2.5.5 Performance

To ensure meaningful data, the framework should not slow down the host-application to
the point that its usability is affected. Together, the analysis and critique phases should
take less than 10 minutes for every hour spent in the capture phase.

2.5.6 Supportability

Full source code comments should be provided for all code in the framework. The frame-
work should be structured so that it can be easily extended with new capturing abilities,
interpretation algorithms, and report section types.

2.5.7 Implementation requirements

The prototypical implementation of the framework should be usable with host-applications
developed for the Apple iOS platform. Therefore, parts of it must be programmed in the
Objective-C language. The framework should also be prepared for future cross-platform
compatibility. To do so, all code that does not directly run on the mobile device should
be programmed in the Python language.

22

2.6. SYSTEM MODELS

2.6 System models

<<ac to r>>

HostApplication

ControlSession

ConfigureReport

ViewReport

CaptureUsabilityData

muEvaluationFramework

TestUser

Developer

<< in i t ia te>>

<<in i t ia te>>

<<in i t ia te>>

<<part ic ipate>>

<<part ic ipate>>

<<in i t ia te>>

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.2: The main use cases for the actors Developer, TestUser and HostApplication

(UML use case diagram)

2.6.1 Use case model

From the requirements described in Sections 2.4 and 2.5 three actors and three use cases
were identified. The use cases specify how the actors interact with the system (Figure 2.2).
In this section, we describe the actors and explain each use case.

Actors

From the objectives and functional requirements, the actors Developer, TestUser, and
HostApplication were identified:

• Developer: The Developer wants to assess and improve the usability of the HostAp-
plication. To do so, the Developer uses the muEvaluationFramework to capture
usability data and to generate a report that contains information about the usability
of the HostApplication.

• TestUser: The TestUser interacts with the HostApplication during an evaluation
session. His or her actions are captured and form the basis of the usability analysis.

23

CHAPTER 2. REQUIREMENTS SPECIFICATION

• HostApplication: The Developer uses the muEvaluationFramework to assess and
improve the usability of the HostApplication.

Use cases

As a result from the functional requirements, the following activity was identified as the
main use case for the actors Developer, TestUser, and HostApplication (Figure 2.2):

• CaptureUsabilityData: Usability related data are captured during an evaluation
session initiated by the Developer. The actors TestUser and HostApplication

participate in the evaluation session.

PreviewEventsCaptureUsabilityData
<<Extend>>

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.3: The PreviewEvents use case (UML use case diagram)

To satisfy the “Live preview for collected events” requirement, the PreviewEvents use
case is inserted, which extends the CaptureUsabilityData use case (Figure 2.3):

• PreviewEvents: The Developer watches a live preview of the captured events during
an evaluation session.

Now that we have identified the the main use case of the framework, we describe three
new use cases for the developer and then further refine one of the new use cases. The
following three use cases were identified for the actor Developer (Figure 2.2):

• ControlSession: The Developer selects the active sensors and starts or stops a
session.

• ConfigureReport: The Developer configures the contents of the report.

• ViewReport: The Developer views the report that summarizes the usability issues
found in the HostApplication.

When inspecting the ControlSession use case it became obvious that it is very wide in
scope. Subsequently, the three specialized use cases SelectSensors, StartSession, and
StopSession were identified (Figure 2.4):

• SelectSensors: Before an evaluation session starts, the Developer chooses a set of
sensors that are active during the session.

• StartSession: The Developer starts the evaluation session.

• StopSession: The Developer stops the evaluation session.

24

2.6. SYSTEM MODELS

SelectSensors

ControlSession

StopSessionStartSession

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.4: Specialization of use case ControlSession (UML use case diagram)

2.6.2 Object model

This section describes the conceptual model of the muEvaluationFramework. The included
objects were identified during the requirements elicitation phase and are now explained.
Because many objects were identified, the object model is split into several conceptual
sub-models.

Capture Analysis Critique

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.5: Relationships of the sub-models (UML package diagram)

From a high-level perspective, the automated usability evaluation performed by the frame-
work follows the three-step pattern of consecutive capture, analysis and critique phases
as explained in Section 1.4.3. The following sections of the system description also reflect
this pattern: First, we describe the object model of the capture phase. Second, we de-
scribe the object model of the analysis phase. And third, we describe the object model
of the critique phase.

25

CHAPTER 2. REQUIREMENTS SPECIFICATION

Capture phase

During the capture phase, the muEvaluationFramework gathers and stores usability data
belonging to a host-application. The collection of usability data is performed during an
evaluation session in which a test user interacts with the host-application.

In this section we will explain: when usability data are captured; what kinds of usability
data are captured; how the data are captured; and where the captured data are stored
for later use. We will do so by grouping the object model of the capture phase into three
parts:

First, we provide a general overview of a usability evaluation session and describe the
objects that are involved with it. Second, we explain what usability data are and how
they are collected by sensors. Finally, we explain how the framework stores the collected
usability data for use in the analysis phase.

+start()
+stop()
+selectSensors(sensorSet : Sensor [])

EvaluationSession

TestUser Developer

+launch()
+quit()

HostAppl icat ion

Usabil i tyData

MobileDevice

+attachTo(t : SensorTarget)
+enable()
+disable()

Sensor

monitors

collects

runs on

uses

is collected in

is analyzed in

participates in initiates

interacts with

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.6: High level overview of the participating entities of the capture phase (UML
class diagram)

Usability evaluation sessions The framework analyzes the usability of an application
that runs on a MobileDevice. We call this application the HostApplication. The frame-
work collects usability data (represented by the class UsabilityData) about the host-
application during the capture phase of an EvaluationSession. We describe the different
kinds of usability data and how they are detected in the next paragraph. But first, we
explain the concept of evaluation sessions. An overview of the related objects is given in
Figure 2.6.

26

2.6. SYSTEM MODELS

HostApplicationTestUser
EvaluationSession

Developer

4: stop()

3: interactWith()

2: participate()

1: start()

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.7: The life cycle of a usability evaluation session (UML sequence diagram)

Two persons participate in an evaluation session: the Developer, who controls the session;
and a TestUser, who uses the mobile device during the session to interact with the host-
application. When the Developer starts the EvaluationSession, the framework begins
to monitor the HostApplication and starts to collect UsabilityData. The Developer

can stop a running EvaluationSession at any time; this stops the data collection and
ends the capture phase. This life cycle is depicted in Figure 2.7.

Usability data collection In this section we describe usability data by answering the
following questions: “What are usability data?” and “How does the framework capture
usability data?”.

First, we define the term usability data. As the name suggests, usability data are related
to the usability of the host-application that is analyzed during an evaluation session.
The usability data that the framework collects in the course of an EvaluationSession

are represented by the UsabilityData object. There are three factors that influence
UsabilityData (Figure 2.8):

• The TestUser, who interacts with the HostApplication. Different test users, or
even the same user, might show different performances in each evaluation session.

• The HostApplication, which the Developer wants to improve usability-wise.

• The MobileDevice, which executes the HostApplication. Both the device’s hard-
ware and its software influence the performance and behavior of the test user. For
example, the hardware of different mobile devices might vary in screen resolution,
screen size, or device weight. These are all aspects that affect usability. Similarly,
the software that runs on a mobile device, for example the underlying runtime en-

27

CHAPTER 2. REQUIREMENTS SPECIFICATION

vironment or operating system, influences the test user as well. A newer version
of the operating system, for example, might offer better graphics performance or
enhanced text entry capabilities and thus alter the usability.

Usabil i tyData

TestUser

HostAppl icat ion

MobileDevice

runs on

interacts with

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.8: Influencing factors on usability data (UML class diagram)

Usabil i tyDataSensorTarget

1..*
yields

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.9: The relationship between SensorTargets and UsabilityData (UML class di-
agram)

The question arises how usability data can be detected in a host-application. In the
muEvaluationFramework, usability data are collected from SensorTargets which can be
observed by Sensors to yield the wanted usability data.

Before the EvaluationSession starts, the Developer selects a set of Sensors to control
the types of usability data that are collected. The Sensors are the framework’s means
of collecting usability data; Sensors are software-based and do not exist as physical
objects in the world. Instead, a Sensor is program code that attaches to one or more
SensorTargets, which reside in the HostApplication, and observes them.

28

2.6. SYSTEM MODELS

-isActive : boolean
+attachTo(t : SensorTarget)
+enable()
+disable()

<<abstract>>
Sensor

HostAppl icat ion

Usabil i tyData

SensorTarget

*

1..*
*

observes

collects

monitors

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.10: Sensors and SensorTargets (UML class diagram)

SensorTarget

VariableMethod

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.11: SensorTarget specializations (UML class diagram)

The framework uses two types of sensor targets: Methods and Variables.

A Method sensor target is, for example, a function in the host-application’s address space
that is called every time the TestUser touches the device’s screen. A TouchInputSensor

can then “spy” on this function, and for each invocation of the function, record a timestamp
and the arguments of the call. This sensor can tell the framework when and how the test
user interacts with the MobileDevice’s touch screen. This information is clearly usability-
related and is therefore within the scope of the the framework.

The second type of sensor target is called Variable. It represents the memory address of
an important variable inside the host-application. A sensor either retrieves the contents
of the variable every few seconds to see if the variable has changed (polling) or subscribes
with the variable’s owner object to be informed of any changes (interrupt-driven). An
example variable might indicate the light level of the mobile devices’s environment and
can be observed by a LightLevelSensor to provide helpful usability data.

The framework supports a number of specialized Sensors and SensorTargets, such as:

• TouchInputSensor: tracks how the test user interacts with the mobile device’s touch
screen (e.g. finger tapping, scrolling and other gestures)

29

CHAPTER 2. REQUIREMENTS SPECIFICATION

• AudioSensor: records sound from the mobile device’s built-in microphone (if avail-
able)

• ScreenSensor: records the contents of the mobile device’s screen, and

• TextEntrySensor: tracks any data entry to text input fields that is performed by
the test user.

UsabilityData objects are abstract data that are not suitable for storage by the frame-
work. Therefore, the framework internally stores the collected usability data as Events

which serve as an representation of the usability data that is useful for later analysis.
Events are explained in the next paragraph.

<<abstract>>
Sensor

TouchInputSensor AudioSensor TextEntrySensorScreenSensor

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.12: Sensor specializations (UML class diagram)

Usability data storage During the observation of SensorTargets, the Sensors collect
UsabilityData. For storage, these usability data are wrapped into Event objects, which
represent the usability data and contain additional metadata, such as a timestamp that
shows when the event was created.

-timestamp : Time

<<abstract>>
Event+attachTo(t : SensorTarget)

+enable()
+disable()

<<abstract>>
Sensor

+addEvent(e : Event)
SessionJournal

Usabil i tyData

*

* {ordered}

collects <<represents>>

creates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.13: Event as a storable representation of usability data (UML class diagram)

30

2.6. SYSTEM MODELS

<<abstract>>
Event

UserInputEvent CustomEventApplicationEventUserInterfaceEvent DeviceSensorEvent

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.14: Specializations of the Event object (UML class diagram)

Event is an generalized base class for further specific event types which represent different
kinds of usability data. The framework uses five specializations for Events that are
depicted in Figure 2.14:

• UserInputEvent: stores direct input actions by the TestUser, such as touch screen
input or text entry via the mobile device’s keyboard (which could also be a virtual
“software” keyboard).

• UserInterfaceEvent: describes interactions with the user interface (UI) of the
HostApplication, for example, button presses or changing screen contents. This
is different from UserInputEvents because user-interface events are events that lie
completely within the functionality of the host-application, i.e. a test user might
touch the screen of the device (this generates a UserInputEvent) but the UI of the
host-application might not register the touch, so in this case no UserInterfaceEvent

is generated. Usability issues of this kind do exist, for example, buttons that do
not react to user touches because the buttons’ event handlers are not set up cor-
rectly. Hence, this distinction between UserInputEvent and UserInterfaceEvent

is needed.

• DeviceSensorEvent: encapsulates data provided by hardware sensors of the Mo-

bileDevice, for example, accelerometer data or GPS location updates.

• ApplicationEvent: are related to state changes of the HostApplication, for exam-
ple, launching and quitting it. ApplicationEvents can also be exceptions that are
raised by the underlying runtime environment.

• CustomEvent: represents events that are completely under the control of the De-

veloper. This allows developers to generate specialized events by simply calling a
function with the event name as a string parameter.

The Events that are collected in the capture phase must be stored for the following analy-
sis phase that accesses them. Therefore, event storage is provided by the SessionJournal

object.

31

CHAPTER 2. REQUIREMENTS SPECIFICATION

User interface To satisfy the ControlSession use case and the PreviewEvents use case
two user interfaces for the Developer are added. With the SessionControlUI object the
Developer can start and stop evaluation sessions, as well as select the set of active sensors
before a session starts. The PreviewEventsUI object allows the Developer to see which
Events are captured during an EvaluationSession.

Developer

+startSession()
+stopSession()
+selectSensors()

SessionControlUI

+watchEvents()
EventPreviewUI

uses

uses

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.15: User interfaces for the capture phase (UML class diagram)

Analysis phase

In the analysis phase the Events that were collected during the capture phase are inter-
preted to provide the interpretation results required by the final critique phase. These
results therefore have to be stored in order make them available to the next phase. In
this section we describe how Events are interpreted in the analysis phase and how the
interpretation results are stored.

<<abstract>>
InterpretationResult

<<abstract>>
Interpreter

InterpreterControl ler

+addResult(r : InterpretationResult)
ResultStore

-timestamp : Time

<<abstract>>
Event

*

*

*

1..*

stores results in

controls

*

interprets

interprets

generates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.16: Overview of the analysis phase object model (UML class diagram)

Usability data interpretation The interpretation of the collected usability data is the
most difficult aspect of the framework. During the analysis phase, multiple Interpreter

32

2.6. SYSTEM MODELS

objects generate InterpretationResults which either represent a usability problem or
provide summarizing information. Usability problems and summaries are represented by
the UsabilityProblem or UsabilitySummary objects respectively.

Interpreters can either interpret events that were collected during the capture phase
or they can further interpret already existing interpretation results. Such a blackboard2-
based approach is very flexible and allows Interpreters to continuously produce more
abstract and higher-level results by refining and working on previously generated interpre-
tation results. Because interpreters can be dependent on the results of other interpreters,
the framework must provide a way to resolve these dependencies and to find a valid order
of execution. The whole interpretation session as well as the individual Interpreters are
managed by the InterpreterController. The controller also determines the beginning
and the end of the analysis phase.

InterpretationResult

Usabil i tyProblem Usabil i tySummary

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.17: InterpretationResult specializations (UML class diagram)

Interpreter types The framework uses six different Interpreter types during the anal-
ysis phase. We now briefly describe the purpose of each Interpreter that is shown in
Figure 2.18:

• OverviewInterpreter: provides summarizing information about the Evaluation-

Session. For example, when the evaluation session started, when it ended, and the
number of events that were recorded.

• ScreenshotInterpreter: gathers the screenshots from the Events in the Session-

Journal and sorts them by their timestamp, thereby creating a persistent ordering.
This ordering can be used by other interpreters to reference a screenshot without
duplicating the image data.

• TouchHeatmapInterpreter: gathers touch events and maps them to screenshot im-
ages.

• ViewChangesInterpreter: gathers all UserInterfaceEvents that indicate a view
change in the host-application. The view changes are then mapped to the screenshot
indices created by the ScreenshotInterpreter.

2The Blackboard design pattern [31]

33

CHAPTER 2. REQUIREMENTS SPECIFICATION

• ViewDurationInterpreter: gathers the timestamps of all view change events and
generates a statistic that shows for how long each view was active.

• UIGuidelineChecker: searches the host-applications view hierarchy that is con-
tained in the UserInterfaceEvents for violations against the human-interface guide-
lines.

<<abstract>>
Interpreter

OverviewInterpreter

ViewChangesInterpreter

ScreenshotInterpreter

UIGuidelineChecker

ViewDurationInterpreter

TouchHeatmapInterpreter

AnalysisStatisticsInterpreter

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.18: Interpreter types (UML class diagram)

Interpretation result storage Because of the three phase approach towards usability
analysis taken by the framework, the generated InterpretationResults must be stored
and made accessible to the subsequent critique phase. In the analysis phase, the Result-

Storage object is responsible for the storage of InterpretationResults (Figure 2.16).

Critique phase

The functional requirements for the muEvaluationFramework state that, as final output,
it should generate a report that summarizes the interpretation results that were found in
the analysis phase (Section 2.4.3). The framework generates reports during the critique
phase and we now describe the object model for this phase. To do so, we structure the
description into three steps. First, we explain the document model used by the reports.
Second, we describe how a developer configures a report. And third, we explain how
reports are generated.

34

2.6. SYSTEM MODELS

Report

InterpretationResult

Developer

HostAppl icat ion

recommends changes toviews

summarizes

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.19: High-level object model of the critique phase (UML class diagram)

Report document model The report that is generated by the framework during the
critique phase is represented by the Report object. Reports are viewed by Develop-

ers because they provide them with valuable information regarding the usability of the
HostApplication. To help improve usability, a report recommends changes that should
be made to the HostApplication. These suggested changes and helpful pieces of infor-
mation are contained in the InterpretationResults provided by the previous analysis
phase. A Report summarizes the information contained in the InterpretationResults

for the Developer.

+addSection(s : Section)
Report

<<abstract>>
Section

OverviewSection EventTimeline TouchHeatmaps UserNavigationPath

1..* {ordered}

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.20: Report document model and Section specializations (UML class diagram)

Now that we have defined what Reports are used for, we explain the internal document
model used by the reports. The document model of a report follows a simple structure:
one Report consists of an ordered list of one or more Sections. Information for the
developer is therefore contained in the Sections. The framework supports four Section

types (Figure 2.20):

35

CHAPTER 2. REQUIREMENTS SPECIFICATION

• OverviewSection: Provides general information about the report, for example, the
name of the application that was analyzed and the number of events that were
recorded.

• EventTimeline: An interactive list of the events that were recorded during an eval-
uation session.

• TouchHeatmaps: Shows how the user interacted with each view in the host-application.
Finger touches are represented as colored circles.

• UserNavigationPath: Shows the test user’s navigation path through the views of
the host-application.

Report configuration Before a Report is generated the Developer must configure it.
This allows the developer to choose where the resulting report is stored and which Sec-

tions are included. A finished report configuration is represented by the ReportConfig-

uration object, which contains the necessary information about the Report. As shown in
Figure 2.21, this ReportConfiguration is then used by the ReportGenerator object (ex-
plained in Paragraph 2.6.2) to create the report document according to the configuration
options provided by the developer.

ReportGenerator

ReportDeveloper

-outputFolder : String
-sections : Section[]

ReportConfiguration
uses

generates

requests
Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.21: Report configuration (UML class diagram)

Report generation Reports are created by the ReportGenerator object which controls
the report generation process. The report generator uses the configuration options pro-
vided by the developer to choose an output folder for the finished report document as
well as to decide which sections must be included in the report. Each individual section is
then created by the SectionGenerator object. The section generator uses the information
contained in the InterpretationResults from the analysis phase to create Sections for
the Report. The objects involved in the generation of a report are depicted in Figure 2.22.

36

2.6. SYSTEM MODELS

ReportGenerator

InterpretationResult

<<abstract>>
Section

Report

SectionGenerator

1..* {ordered}

1..*

uses

generates

uses

generates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.22: Report generation overview (UML class diagram)

2.6.3 Dynamic model

This section documents the behavior of the object model in terms of activity diagrams
and sequence diagrams. Although some use case information is described redundantly,
dynamic models enable us to specify the behavior more precisely. The dynamic model
follows the general structure of the framework and is therefore divided into three parts:
the capture phase, the analysis phase, and the critique phase. During the capture phase
usability data are captured and stored as Events in a SessionJournal. These events
are then used by the subsequent analysis phase to generate InterpretationResults,
which are stored in the ResultStore. The interpretation results are finally used in the
critique phase to generate a Report for the developer. This high-level behavior is shown
in Figure 2.23.

Capture Analysis Cri t ique

TestUser

ReportResultStoreSessionJournal

UsabilityData

InterpretationResultsEvents

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.23: High-level dynamic model of the framework (UML activity diagram)

37

CHAPTER 2. REQUIREMENTS SPECIFICATION

Capture phase

Initialize
SessionJournal

Initialize
Sensors

Create EventObserve
SensorTargets

Continue with
next Sensor

ActiveSensors

<<structured>>
for each Sensor

SessionJournal

[targets did not change]

Event

[targets changed]

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.24: Capture phase (UML activity diagram)

SessionJournal

e1 :
UserInputEvent

TestUser

a1 :
Action

Sensor

2: detect()

4: addEvent(e1)

3: create(time)

1: perform()

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.25: Event detection example (UML sequence diagram)

Capture phase

The framework captures usability data as Events. This means that detected usability
data must be converted into Event objects; this is performed by the Sensors. At the
start of an EvaluationSession the SessionJournal and the Sensors are initialized. As
long as the session is running the Sensors observe SensorTargets for changes. If a change
is detected, the Sensor creates a new Event and adds it to the SessionJournal.

Figure 2.25 shows, for example, how user input is captured by the framework as Events:
first, the TestUser performs an action, such as touching the MobileDevice’s screen. This
action is then detected by a Sensor that creates the appropriate event instance, in this
case an UserInputEvent. The Sensor finally adds the event to the SessionJournal where
it is stored to be accessed by the Interpreters during the analysis phase, which takes
place after the EvaluationSession ends.

38

2.6. SYSTEM MODELS

Run analysis phase

Initialize
ResultStore

Initialize
Interpreters

Update
ResultStoreRun Interpreter ResultStore

<<structured>>
Loop

SessionJournal InterpretationResultEvent

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.26: Analysis phase (UML activity diagram)

Analysis phase

During the analysis phase, the framework interprets the Events that were gathered in the
previous capture phase. This interpretation is performed by several Interpreters that
analyze the Events in the SessionJournal and produce InterpretationResults which
are then stored in the ResultStore.

The analysis phase works as follows (Figure 2.26): First, a setup step is performed where
the ResultStore and the Interpreters are initialized. After this, the framework se-
lects an Interpreter and runs it to generate or update the InterpretationResults in
the ResultStore. In multiple rounds of execution this step is repeated until the Inter-

preterController decides that the available InterpretationResults are satisfying. The
framework then continues with the subsequent critique phase.

But what happens when an Interpreter runs? First, the interpreter checks if all of
its dependencies are fulfilled. A dependency can be, for example, the existence of a
required InterpretationResult. If all dependencies are fulfilled the interpreter continues,
otherwise it waits to execute again in the next round. The interpreter now gathers all of its
required resources, that is, Events from the SessionJournal and InterpretationResults

from the ResultStore. After all of the “working materials” are available the interpreter
decides if it can contribute to the common solution represented by the ResultStore. If
it can contribute the interpreter updates an existing InterpretationResult or generates
a new one. In either case, the ResultStore must then be updated. Because interpreters
may execute multiple times, the interpreter must now decide whether it can contribute
once more and should execute again in the next round or if it is finished. A finished
interpreter does not execute again in the current analysis phase. Figure 2.27 shows the
interpreter activity as a flow chart.

39

CHAPTER 2. REQUIREMENTS SPECIFICATION

Check dependencies

Access Events in the
SessionJournal

Access
InterpretationResults in

the ResultStore

Wait for next round

Generate or update
InterpretationResult(s)

Update ResultStore

Check if the interpreter
can contribute to the

blackboard

[it is finished]

[it should execute again]

[it can contribute]

[it cannot contribute]

[all dependencies
are fulfilled]

[>= 1 dependency
is missing]

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.27: Interpreter execution (UML activity diagram)

Critique phase

Figure 2.28 contains an overview of the report generation flow of work. For each section in
the report, the ReportGenerator accesses the ReportConfiguration to determine which
section must be generated next.

40

2.7. USER INTERFACE

Generate Report

Add Section
to Report

Generate
Section

Select Section to
generate

ReportConfiguration

<<structured>>
Loop

Report

ResultStore

InterpretationResult Section

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.28: Report generation (UML activity diagram)

This Section is then constructed by the SectionGenerator using the interpretation re-
sults in the ResultStore (Figure 2.29 and Figure 2.22). The finished Section is added
to the Report and if there are sections left, the section generation process is performed
again. Once all Sections are processed, report generation is complete and the finished
Report can be viewed by the Developer.

Generate Section

Select Section
implementation

Generate
Section SectionResultStore

InterpretationResult

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2.29: Section generation (UML activity diagram)

2.7 User interface

Capture phase

Session control To fulfill the ControlSession use case a user interface is needed that
allows the Developer to carry out the following three tasks: First, to select the active
sensors before the start of an evaluation session. Second, to start an evaluation session.

41

CHAPTER 2. REQUIREMENTS SPECIFICATION

And third, to stop an evaluation session. The PreviewEvents use case also requires a form
of live output of the events that are generated. Minimally this can be simply a textual
log of the generated events as shown in Figure 2.31. A preliminary mockup for a more
complex graphical user interface is depicted in Figure 2.32. Here, an application we call
Mobile Monitor allows for browsing of existing sessions as well as the recording of a new
session. The mockup also shows the live preview of events.

Critique phase

Report configuration The ConfigureReport use case requires a user interface for devel-
opers. Developers must be able to choose the output directory of reports and they must
be able to toggle the inclusion of individual report sections. A preliminary user interface
mockup is depicted in Figure 2.33. Here, the report configuration is a part of the Mobile

Monitor application.

Report user interface Interactive Reports that are generated as HTML files, also re-
quire a user interface for the Developer to fulfill the ViewReport use case. A sample
illustration of such an interface is displayed in Figure 2.30. In this figure, an interactive
timeline of events makes it possible to display only a subset of all recorded events by
allowing the developer to filter the stream of events by event type.

42

2.7. USER INTERFACE

+- + Mobile Monitor HTML Report

localhost://Users/joe/reports/mmreport-02-23-2011.html

Overview

Timeline

0s 1s 2s 3s 4s 5s 6s

Filter event types:

TouchEvent

UserEvent✔

DragEvent

WidgetTapEvent

WriteMailEvent

DeveloperDefinedEvent✔

SendFailedEvent

MapLoadEvent

ApplicationLaunch

ApplicationEvent✔

ApplicationQuit

Touch heatmaps

Mobile Monitor // Report // Wordpress for iOS

UserEvent : TouchEvent

Timestamp: 00:00:04:25

Position: (243.0, 127.0)

Figure 2.30: A finished interactive report (Mockup screenshot)

43

CHAPTER 2. REQUIREMENTS SPECIFICATION

Figure 2.31: Event log user interface in an early version of the prototype (Screenshot)

Mobile Monitor

Sessions

weMakeWords

Wordpress for ...

05.02.2010

07.02.2010

08.02.2010

Search
New session Delete session

Session Control Report Generator

Record

Time: 11:42 - 12:02 (20 minutes)

Length: 9435 events (9000 user, 400 developer, 35 application)

Host-Application: Wordpress for iOS (4.0.2)

1.3s - UserEvent - Touch

Event list
0.1s - ApplicationEvent - Launch

1.5s - UserEvent - Touch
2.3s - UserEvent - Touch
3.5s - UserEvent - Touch
3.3s - UserEvent - Touch
5.5s - UserEvent - Touch
6.3s - UserEvent - Touch
7.5s - UserEvent - Touch
7.3s - UserEvent - Touch
9.5s - UserEvent - Touch
10.3s - UserEvent - Touch
10.5s - UserEvent - Touch
11.3s - UserEvent - Touch
12.5s - UserEvent - Touch
13.3s - UserEvent - Touch
13.7s - UserEvent - Touch
14.5s - UserEvent - Touch

Type: Event -> TouchInputEvent

Coordinates: (146, 267)

Timestamp: 00:00:06:33

Select Sensors

Figure 2.32: Session control user interface during the capture phase (Mockup screenshot)

44

2.7. USER INTERFACE

Mobile Monitor

Sessions

weMakeWords

Wordpress for ...

05.02.2010

07.02.2010

08.02.2010

Search
New session Delete session

Session Control Report Generator

Report properties

Build report

View report

Option 1

Option 3
Option 2

Options:

Sections:

Output folder: /Users/hans/Desktop/mobilemon

Change

Overview

Reachability graph
Event timeline

Touch heatmaps

Video recordings
Audio recordings

Other section

Lorem ipsum

Mockup section
Dolor sit amet

Dummy section
Test section

Time: 11:42 - 12:02 (20 minutes)

Length: 9435 events (9000 user, 400 developer, 35 application)

Host-Application: Wordpress for iOS (4.0.2)

Figure 2.33: Report configuration user interface (Mockup screenshot)

Figure 2.34: A touch heatmap section (Mockup screenshot)

45

CHAPTER 2. REQUIREMENTS SPECIFICATION

46

3 System design

This chapter describes the transformation of the analysis model into a system design
model. The system design model presents the preliminary architecture and the design
goals that influenced it.

3.1 Design goals

Extensibility and maintenance

Because usability evaluation is such a dynamic field of work, the probability of users re-
questing changes to the framework is high. Therefore the muEvaluationFramework should
be easy to extend with new capture, analysis, and critique abilities. This means that the
framework must be easily extensible with new sensors (capture), interpreters (analysis),
and report sections (critique). Another important extensibility and maintenance goal is
the portability of the framework. Even though we focus our development on the Apple
iOS [5] platform for mobile devices it should also be possible to port the framework to
other platforms, such as Google Android [16] or Nokia Symbian [25].

3.2 Subsystem decomposition

In this section we introduce the initial decomposition of the muEvaluationFramework into
subsystems and describe the responsibilities and boundaries of each subsystem. First,
based on the functional requirements and the models shown in the previous chapter,
the following main subsystems depicted in Figure 3.1 were identified: the Capture, the
Analysis and the Critique subsystem.

The overall structure of a usability evaluation (as described in Section 1.4.3) leads to
two dependencies between the subsystems: First, the analysis subsystem depends on the
events collected by the capture subsystem. And second, the critique subsystem depends
on the results of the analysis subsystem.

47

CHAPTER 3. SYSTEM DESIGN

Because of these dependencies there is only one reasonable order of execution in which
the capture phase executes first, then the analysis phase follows, and finally the critique
phase executes. The subsystems that were identified are now presented in closer detail.

Capture Analysis Critique

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.1: Relationship of the main subsystems (UML package diagram)

3.2.1 Proposed software architecture

The framework was divided into subsystems in order to separate the functionalities. This
decomposition was performed with the principle of low coupling and high coherence in
mind [12]. This means that an attempt was made to minimize dependencies between
subsystems and to maximize cohesion between objects in a subsystem. In general, the
architectural design of the muEvaluationFramework follows very closely the three phase
model described in Sections 1.4.3 and 2.6.2.

To describe the used software architecture more closely we must distinguish between the
overall architecture of the framework (i.e. the main subsystems) and the architectures of
each individual subsystem.

Overall, the framework uses a closed software architecture consisting of three layers. Each
layer is represented by one of the main subsystems, i.e. the Capture, the Analysis and
the Critique subsystem. The architecture is closed because each layer (or phase) may
only access the outputs of the previous layer.

At the level of the individual subsystems the framework is structured using two more
architectural styles. First, the Capture subsystem uses a client/server architectural style
where a client, the CaptureLibrary, transmits usability data to the CaptureServer. Sec-
ond, the other two main subsystems (Analysis and Critique) follow a repository archi-
tectural style because they both contain a central data structure that is modified while
the subsystem is active (the ResultStore and the Report respectively).

48

3.2. SUBSYSTEM DECOMPOSITION

Capture CritiqueAnalysis

ReportController

ResultStorage

AnalysisController

Interpretation

SectionGenerator

CaptureLibrary

CaptureServer

Communication

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.2: Overview of the main subsystems (UML package diagram)

3.2.2 Capture subsystem

The Capture subsystem is used during the capture phase of a usability evaluation. It
collects usability data related to the host-application and stores them for later analysis.
The capture subsystem consists of three subsystems (Figure 3.2 and Figure 3.3):

• CaptureLibrary: This subsystem is responsible for the collection of usability data
during an evaluation session. It uses Sensors to collect the necessary data and
encapsulates them in Events. The CaptureLibrary subsystem is the part of the
muEvaluationFramework that is embedded into a host-application and must there-
fore be kept as small as possible. Hence, the CaptureLibrary subsystem does not
store the collected data; it merely captures them and hands them over to the Cap-

tureServer subsystem via the Communication subsystem. The newly identified
CaptureManager object controls the subsystem.

• CaptureServer: This subsystem stores the Events that were collected by the Cap-

tureLibrary. Thereby the events and their properties are made available for the
Analysis subsystem. The CaptureServer subsystem is controlled by the newly
identified CaptureController object and it uses the Communication subsystem to
receive events from the CaptureLibrary.

• Communication: This subsystem facilitates the transmission of events from the Cap-
tureLibrary to the CaptureServer subsystem.

49

CHAPTER 3. SYSTEM DESIGN

Capture

CaptureLibrary

CaptureServer

Communication

<<abstract>>
Sensor

SensorTarget

<<abstract>>
Event

SessionJournal

NetworkConnection

NetworkMessage

CaptureManager

ServerController

1..*

1..*

*

*

*

receives Events

sends Events

observes creates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.3: The Capture subsystem (UML package diagram)

Communication subsystem The Communication subsystem is used by the Capture-

Library to transmit Events to the CaptureServer. Because we newly identified the
functionality of this subsystem in the system design phase we must extend the analysis
object model with new objects. The Communication subsystem consists of two objects,
NetworkConnection and NetworkMessage. The new objects are depicted in Figure 3.4.

A NetworkConnection represents a link between the CaptureLibrary and the Capture-

Server subsystems. It is used by both the CaptureManager and the ServerController

for communication.

A NetworkMessage is used by the NetworkConnection to exchange information over the
network. It represents the Events that are encoded for transport and are sent over the
NetworkConnection. A NetworkMessage can also be housekeeping data to setup or tear
down a connection.

+connect()
+disconnect()
+sendEvent(e : Event)
+receiveEvent() : Event

NetworkConnection

NetworkMessage

*

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.4: The newly identified objects for the Communication subsystem (UML class
diagram)

50

3.2. SUBSYSTEM DECOMPOSITION

3.2.3 Analysis subsystem

The Analysis subsystem contains the objects and subsystems which are needed during
the analysis phase of a usability evaluation. As depicted in Figures 3.2 and 3.5, the
subsystem consists of three subsystems:

• AnalysisController subsystem: This subsystem is responsible for setting up the
working environment required by the interpreters and managing the interpreters
themselves.

• Interpretation subsystem: Processes the events that were collected during the
capture phase and infers knowledge about the usability properties of the analyzed
application. Because it requires access to the SessionJournal it depends on the
Capture subsystem.

• Storage subsystem: Stores the InterpretationResult objects produced by the
Interpretation subsystem because they must be accessed by the Critique subsys-
tem.

Analysis

Capture

AnalysisControllerInterpretation

Storage

InterpretationResult

Interpreter InterpreterControl ler

ResultStore

stores results in

1..*

*

*

generates

SessionJournal

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.5: The Analysis subsystem (UML package diagram)

3.2.4 Critique subsystem

The Critique subsystem is used during the critique phase of a usability evaluation. It
builds on the knowledge generated by the Analysis subsystem and its main purpose is
to assemble a report document for the developer. As shown in Figure 3.2 and Figure 3.6,
the subsystem consists of the following three subsystems:

51

CHAPTER 3. SYSTEM DESIGN

• ReportController subsystem: This subsystem contains the ReportGenerator ob-
ject which manages the overall structure of the report as well as the flow of work
during the critique phase. The report generator controls the Report object and uses
the ReportConfiguration provided by the developer to determine which sections
must be created.

• SectionGeneration subsystem: Accesses the interpretation results stored by the
Analysis subsystem and generates the individual Sections of the report.

Critique

Analysis

SectionGenerator

ReportController

ReportConfiguration

ReportGenerator Report

SectionSectionGenerator

1..*

1..*

uses

generates

ResultStore

uses

generates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.6: The Critique subsystem (UML package diagram)

3.3 Hardware/software mapping

The following section describes the relationship between runtime components and hard-
ware nodes in the muEvaluationFramework.

Because the framework is used to monitor applications on mobile devices at least parts of
it must be deployed on the mobile device. Therefore we decided to manifest the Capture-

Library subsystem of the Capture subsystem in a separate library called libCapture.a

which the host-application is linked against at compile time.

The CaptureServer subsystem of the Capture subsystem is manifested in the Capture-

Server.py artifact. Also, the capture server does not run on the mobile device. Therefore,
the capture library and the capture server must communicate over a network connection.

The Analysis and Critique subsystems of the framework are executed on a more power-

52

3.3. HARDWARE/SOFTWARE MAPPING

ful desktop computer for reasons of performance and data storage: the framework records
hundreds or thousands of events each minute, some of which are heavily augmented with
complex metadata such as screenshots or video frames. Both parts of the framework are
manifested in the Mobile Monitor.app application artifact. Splitting up the framework
among these two devices means that a way for communication between the nodes is re-
quired. To allow the end user to use the device in a natural way during an evaluation
session, i.e. without any additional wires attached to the device, the network communica-
tion should work across a wireless connection. Figure 3.7 shows how the framework will
be deployed and how it is separated into components on the two devices.

<<device>>
Mobile device

<<dev ice>>
Desktop computer

<<component>>
CaptureLibrary

<<component>>
HostAppl icat ion

<<component>>
Cri t ique

<<component>>
Analysis

<<component>>
CaptureServer

<<ar t i fac t>>
CaptureServer.py

<<ar t i fac t>>
libCapture.a

<<ar t i fac t>>
ReportGenerator.py

<<mani fes t>>

<<wireless network>>

<<mani fes t>>

<<mani fes t>>

<<mani fes t>>

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 3.7: Deployment of the framework and its separation into components (UML de-
ployment diagram)

53

CHAPTER 3. SYSTEM DESIGN

3.4 Persistent data management

This section gives a summary of the persistent data objects used by the framework and de-
scribes how persistent data are stored. There are four types of data in the muEvaluation-

Framework that are candidates for persistent storage. In the following we will give a short
overview for each data type.

Events

Events are produced by the Capture subsystem during the capture phase of an Evaluation-

Session. Developers might want to create multiple Reports from a single sequence of
captured events to gain different insights. The framework must therefore store Events

persistently after the capture phase.

InterpretationResults

The InterpretationResult objects generated by the Analysis subsystem are required
for creating a Report. Because the critique phase is always performed directly after the
analysis phase, the InterpretationResults do not have to be stored persistently from
session to session. Still, the framework must be able to handle many of them during
runtime.

Report configurations

A developer is likely to have several versions of a Report generated when analyzing the
usability of a host-application. Each iteration of the Report is probably quite similar
in the selected configuration options. It is also very likely that a developer who uses
the framework many times comes up with a personalized set of frequently used report
configurations. Therefore it seems sensible to store the ReportConfiguration, i.e. the
order of the included sections as well as each section’s configuration options, for reasons
of convenience.

Report presentations

A Report essentially bundles and all the information contained in the generated Interpre-

tationResults. Therefore the Report is the final and most important artifact produced
by the framework during each EvaluationSession and must be stored persistently.

54

4 Object design

We divided the object model of the muEvaluationFramework into subsystem in the pre-
vious chapter. In this section, we go through the individual subsystem to refine the
model where necessary and to add more detailed methods and attributes to each class.
The object design presented here is structured according to the subsystem decomposition
presented in Section 3.2.

4.1 Interface documentation guidelines

The following coding conventions are used as guidelines:

• Code developed in the Objective-C language should follow the coding guidelines
provided by Apple Inc. [2]

• Code developed in the Python language should follow the style guide provided by
the Python Software Foundation [30]

As a result of the coding guidelines, classnames for classes defined in the Objective-
C language are prefixed with “MF” (for muEvaluationFramework). Prefixes like this are
customary in Objective-C to avoid naming conflicts.

4.2 Subsystems

This section describes each of the three main subsystems of the framework in closer detail.
Again, the description of the subsystems follows the overall capture, analysis, and critique
structure of the framework. Therefore, we present the subsystems in the same order:

1. The Capture subsystem in Section 4.2.1

2. The Analysis subsystem in Section 4.2.2

3. The Critique subsystem in Section 4.2.3

55

CHAPTER 4. OBJECT DESIGN

4.2.1 Capture subsystem

The Capture subsystem includes the three subsystems CaptureLibrary, CaptureServer,
and Communication. The CaptureLibrary is responsible for the actual collection of us-
ability data. Whereas the CaptureServer stores the captured data as events to make
them available to the subsequent analysis phase. Events are transmitted from the Cap-

tureLibrary to the CaptureServer via a network connection that is controlled by the
Communication subsystem.

CaptureLibrary subsystem The CaptureLibrary is the part of the framework that is
deployed on a mobile device. It uses software-based Sensors to collect usability data in the
form of Events that are then transmitted to the CaptureServer using the Communication
subsystem.

-data : NSMutableDictionary*
+init()
+dealloc()
+send()
+addDataObject:forKey:()

MFEvent

-networkConnection : MFNetworkConnection*
-zeroconfService : MFZeroconfService*
-sensors : NSMutableSet*
-dispatchQueue : dispatch_queue_t
+sharedInstance()
+init()
+dealloc()
+addSensor:()
+netServiceAvailable:()
+startCapture()
+stopCapture()
+raiseCustomEvent:()

MFCaptureManager

+enabled : BOOL
+init()
+dealloc()
+attachToTarget()
#interceptSelector:forClass:withImplementation:()
#startTimerWithInterval:()
#stopTimer()

<<abstract>>
MFSensor

+attachToTarget()
MFTouchInputSensor

+attachToTarget()
+sendUIState()
+takeScreenshot()
+sendScreenshot()

MFScreenSensor

+attachToTarget()
MFUIControlSensor

+fullDescription()
UIView(Monitoring)

*

*

creates

creates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.1: Object design for the CaptureLibrary subsystem

As said before, the names of the objects in the CaptureLibrary subsystem are prefixed
with the letters “MF” to prevent naming conflicts. The following objects are the most
important objects of the subsystem (Figure 4.1):

• MFCaptureManager: This object controls the subsystem. It is also the only object
that a developer must interact with when deploying the CaptureLibrary and there-
fore it also serves as a facade for the subsystem. It uses the Singleton pattern to
be easily accessible from within the host-application without requiring too many
source code changes.

• MFEvent: This object represents a part of the usability data that are collected by
the CaptureLibrary. It is implemented as an associative array (or hash map) by

56

4.2. SUBSYSTEMS

using the NSMutableDictionary class provided by the iOS runtime. Usability data
are thus described by a number of key-value pairs stored in the data attribute of a
MFEvent.

• MFSensor: This object serves as an abstract base class for all concrete implemen-
tations of a sensor. It provides methods for recurring tasks that are needed by all sen-
sors, such as method interception (interceptSelector:forClass:withImplementation:)
or timer handling (startTimerWithInterval: and stopTimer).

Now we describe the most interesting aspects of the CaptureLibrary subsystem. We
start by explaining how the CaptureLibrary is deployed to enable event capturing in
an existing host-application. Then we describe how the CaptureLibrary uses sensors to
collect usability data such as the state of the user interface or touch input events.

CaptureLibrary deployment It is a goal of the CaptureLibrary to make it easy to extend
an existing host-application with event capture abilities. Therefore the functionality of the
capture library is encapsulated by a single manager class (CFCaptureManager) that serves
as a facade and hides the complexity from the developer. To make this manager class very
simple to use it is implemented using the Singleton pattern [13]. This means that only
one instance of the manager exists and thus it can be accessed very easily by calling the
class method [MFCaptureManager sharedInstance]. The singleton pattern makes the
manager class comfortably accessible from all locations in the host-application’s source
code, that is, the developer does not have to think about providing access to the manager
object or allocating it. Listing 4.1 shows how the capture library is initialized.

Listing 4.1: CaptureLibrary initialization

// The developer must only include a single header file

// and link the application against the CaptureLibrary

#import "MFCaptureManager.h"

@implementation PlainNoteAppDelegate

- (BOOL)application :(UIApplication *) application

didFinishLaunchingWithOptions :(NSDictionary *) launchOptions

{

// This call automatically finds a CaptureServer , connects to it,

// and initializes all the sensors:

[[MFCaptureManager sharedInstance] startCapture];

// Standard setup code below:

[window addSubview :[navigationController view]];

[window makeKeyAndVisible];

return YES;

}

57

CHAPTER 4. OBJECT DESIGN

Another way to improve the usability of the CaptureLibrary is the automatic setup of the
network connection between the CaptureLibrary and the CaptureServer. The connection
is established automatically and requires no setup by the developer. This is made possible
by a technology called Zero configuration networking1 (Zeroconf). Zeroconf provides
support for automatic service discovery without the need for configuring IP addresses
and ports by hand. The CaptureServer announces its service with a string identifier
("_muEvaluationFramework-capture._tcp.") and the CaptureLibrary can search the
network for available servers and then automatically connect to one.

Determining the UI state To determine the state of an application’s user interface we
must find the root view of an application and then iterate through all of its sub-views,
collecting data as we descend the view hierarchy. The root view of an iOS application
is normally an instance of the UIWindow class. One approach is to create a subclass of
UIWindow that adds a custom method getUIState which returns a description of the
user interface’s structure. Unfortunately, we cannot subclass the UIWindow class because
existing code in the host-application will not automatically use the subclass. Therefore
we have to extend UIWindow directly. Luckily, Objective-C provides a way to do this with
a language feature called Categories [13]. We use the Category pattern to add a method
-(NSDictionary*)getUIState to every UIWindow instance in the host-application. This
method returns a NSDictionary object with the classname, dimensions and title of every
UI element in the view hierarchy. Listing 4.2 shows the console printout of an example
view hierarchy.

Listing 4.2: Example view hierarchy printout

{

address = 97�57632;

className = UIWindow;

frame = {

height = 48�;

width = 32�;

x = �;

y = �;

};

subviews = (

{

address = 97114864;

className = UITransitionView;

frame = {

(...)

};

subviews = (...)

);

};

1Apple’s implementation of Zero configuration networking is called Bonjour. Additional information
about Zeroconf and Bonjour can be found at www.zeroconf.org [14]

58

www.zeroconf.org

4.2. SUBSYSTEMS

Method interception On the iOS platform, applications use a toolkit for graphical user
interfaces called UIKit. UIKit provides a set of objects for interaction handling and
to define common user interface widgets such as buttons (UIButton) or scrollable lists
(UITableView). Because these objects manage the interesting information about user
interactions and the structure of the user interface, the muEvaluationFramework needs a
way to access this information. This access is possible by modifying the internals of UIKit
objects via the built-in reflection mechanisms of the Objective-C language. By extending
or replacing the implementations of certain methods with our own code, we can intercept
them and re-route the information flow if necessary. This procedure is best explained
with a concrete example. Let us assume that we want to capture all touch events that
the user performs while the host-application is active. By reading the iOS documentation
we determine that the UIWindow class is our ideal target for intercepting touch events:
It is the root view in the hierarchy and therefore all touch events must pass through it.
We also find out that UIWindow has a method called sendEvent:(UIEvent*)event that
dispatches user interface events to the correct places - which is exactly what we want to
spy on. Now we need a way to modify this method to give us access to the UIEvents. We
do this by changing a pointer in UIWindow’s method list (struct objc_method_list) that
normally points at the original implementation of the sendEvent: method (Figure 4.2).

We overwrite the method pointer with the address of our own implementation of sendE-
vent: that forwards any UIEvents, which are related to touch input, to the Capture-

Library (Figure 4.3).

To make sure that the behavior of the UIWindow object stays the same, our method imple-
mentation also executes the original sendEvent: method. This modification of runtime
objects is possible to achieve with built-in functions of the Objective-C runtime [4]. In the
prototypical implementation of the CaptureLibrary this method interception technique
is performed using the MAObjCRuntime library [7] that provides a lightweight object
oriented wrapper around the Objective-C runtime interface provided by Apple. Example
code is shown in Listing 4.3.

Now that we can examine all the UIEvents that pass through UIWindow’s sendEvent:

method, we can filter the event stream for interesting events, for example only those that
have an event type of UIEventTypeTouches, and store them for later analysis.

59

CHAPTER 4. OBJECT DESIGN

+sendEvent()
UIWindow

sendEvent:
Implementation (original)

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.2: UIWindow sendEvent: behavior before method interception is performed

+sendEvent()
UIWindow

sendEvent:
Implementation (original)

sendEvent:
Implementation (ours)

CaptureLibrary

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.3: UIWindow sendEvent: behavior after method interception is performed

60

4.2. SUBSYSTEMS

Listing 4.3: Method interception example code

// A pointer to the original implementation of the sendEvent: method.

IMP gOriginalSendEventImp = NULL;

// Our own version of [UIWindow sendEvent :]

static void HijackedUIWindowSendEvent(id self , SEL _cmd , UIEvent *event) {

gOriginalSendEventImp(self , _cmd , event);

/* Check for interesting events here. */

}

// Overwrites the implementation of a method for a given class with a custom pointer

- (IMP)interceptSelector :(SEL)selector

forClass :(Class) aClass

withImplementation :(IMP) anImplementation

{

RTMethod *originalMethod = [aClass rt_methodForSelector:selector];

IMP originalImp = [originalMethod implementation];

[originalMethod setImplementation: anImplementation];

NSLog(@"MFSensor - hijack: [%@ %@] rerouted from �x%x to �x%x",

aClass , NSStringFromSelector(selector), originalImp , anImplementation);

return originalImp;

}

// Enables the sensor by overwriting the sendEvent: method in

// the UIWindow object

- (void)attachToTarget {

gOriginalSendEventImp = [self hijackSelector:@selector(sendEvent :)

forClass :[UIWindow class]

withImplementation :(IMP)HijackedUIWindowSendEvent];

}

Network representation for Events Events are transmitted using a simple XML-based
protocol that stores them as a set of keys and values and also allows nesting data to
preserve a hierarchical structure (e.g. when transmitting UI states). Listing 4.4 shows the
XML representation of an example Event.

Listing 4.4: A UserInputEvent represented as XML

<event >

<key>class </key>

<string >UserInputEvent </string >

<key>timestamp </key>

<date>2�11 -�2 -19 T22:43:�6Z </date>

<key>x</key>

<integer >155</integer >

<key>y</key>

<integer >267</integer >

</event >

61

CHAPTER 4. OBJECT DESIGN

+isConnected : boolean
-inputStream : NSInputStream
-outputStream : NSOutputStream
-writeString()
-writeCommand()
-writeData()
-writeBytes:withLength:()
-stream:handleEvent:()
+connectToService:()
+connectToServiceAtURL:withPort:()
+disconnect()
+sendEvent:()

MFNetworkConnection

MFCaptureManager

MFEvent

-payload : NSMutableDictionary
+messageFromEvent:(e : MFEvent)
+encode() : NSData
+addPayload:(Object : id)

MFNetworkMessage

*

*
represents

sends

creates

connection

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.4: The Communication subsystem implementation for the CaptureLibrary (UML
class diagram)

Communication subsystem The implementation of the Communication subsystem is
split into two parts: One part for the CaptureLibrary subsystem (depicted in Figure 4.4),
and one part for the CaptureServer subsystem (depicted in Figure 4.4)

Because Events must only be transmitted from the CaptureLibrary to the Capture-

Server, the Communication subsystem represents a unidirectional pipe. That is, the part
of the subsystem that is used by the CaptureLibrary sends Events and the part used by
the CaptureServer receives Events.

CaptureServer subsystem The CaptureServer uses the Communication subsystem to
receive Events from the CaptureLibrary. Therefore the CaptureServer can be seen as the
counterpart of the CaptureLibrary. Figure 4.6 shows the objects of the CaptureServer

subsystem:

• ServerController: Provides functionality to initialize and shut down the Capture-

Server. Moreover it also controls the network connection provided by the Commu-

nication subsystem. Therefore it is the controlling class for the CaptureServer.

• Event: Like the MFEvent class of the CaptureLibrary the Event class of the Cap-

tureServer is also implemented as an associative array (or hash map). Contrary to
MFEvent it uses Python’s built-in dict object to represent the associative array.

62

4.2. SUBSYSTEMS

• SessionJournal: Stores the Events received from the CaptureLibrary. The Ses-

sionJournal can return all Events of a certain class with the get_events_of_-

class() operation. The Analysis subsystem uses this functionality to access the
Events in the SessionJournal.

+is_connected
-message_queue : NetworkMessage[]
-handle_request()
-read_message() : NetworkMessage
-convert_message(m : NetworkMessage) : Event
+__init__()
+listen()
+receive_event() : Event

NetworkConnectionServerController

Event
-payload : dict
+read(stream)
+__init__()

NetworkMessage

*

represents

connection
Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.5: The Communication subsystem implementation for the CaptureServer (UML
class diagram)

+events : SessionJournal
+setup_logging()
+announce_service()
+start_session()
+stop_session()

ServerController

-data : dict
+__init__(data)

Event

+addEvent(e : Event)
+getEvents() : Event []
+__init__()
+__repr__()
+add_event(event)
+persist(filename)
+load(filename)
+get_events_of_class(event_class)

SessionJournal

*

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.6: Object design for the CaptureServer subsystem

63

CHAPTER 4. OBJECT DESIGN

4.2.2 Analysis subsystem

The Analysis subsystem consists of the three subsystems AnalysisController, Storage
and Interpretation. We now show the object design for each of the subsystems. After
that we take a closer look at how the Analysis subsystem uses the Blackboard pattern to
analyze the Events that were recorded by the Capture subsystem.

AnalysisController subsystem The AnalysisController subsystem consists of the In-

terpreterController and the AnalysisFacade objects. The former controls how the
Interpreters work together on a shared blackboard called the ResultStore (this is de-
scribed in closer detail later in the following paragraphs). The latter presents a clean
interface to the Analysis subsystem.

+results : ResultStore
+events : Event[]
+interpreters : Interpreter[]
+__init__(events, interpreters)
+get_ready_interpreters()
+loop()

InterpreterControl ler

+add_interpreter(i : Interpreter)
+run_analysis()
+get_results() : ResultStore

AnalysisFacade

<<abstract>>
Interpreter

ResultStore

1..*

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.7: Objects of the AnalysisController subsystem (UML class diagram)

Storage subsystem This subsystem stores the InterpretationResults that are gener-
ated by the Interpreters. InterpretationResults store their payload similarly to the
Events of the Capture subsystem by using Python’s built-in dict object (an associative
array implementation).

64

4.2. SUBSYSTEMS

+results : set
+__init__()
+add_result(result)
+get_results_of_type(type)

ResultStore

InterpreterControl ler

+type : string
+data : dict
+__init__(type, data)
+__repr__()

InterpretationResult

<<abstract>>
Interpreter

1..*

*

*
generates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.8: Objects of the Storage subsystem (UML class diagram)

Interpretation subsystem The Interpretation subsystem consists mainly of the ab-
stract base-class Interpreter and a number of concrete Interpreters. In the following
paragraphs we further describe how multiple Interpreters work together to produce
InterpretationResults.

InterpretationResult

+requirements : string[]
+__init__(requirements = [])
+can_contribute(session_journal, results)
+run(session_journal, results)

<<abstract>>
Interpreter

+is_done : boolean

<<abstract>>
ContributeOnceInterpreter

OverviewInterpreter
AnalysisStatisticsInterpreter

ViewChangesInterpreter

ScreenshotInterpreter

UIGuidelineChecker

ViewDurationInterpreter

TouchHeatmapInterpreter

*
generates

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.9: Objects of the Interpretation subsystem (UML class diagram)

Interpreter blackboard The interpreters of the analysis phase use the ResultStore as
a shared blackboard that holds a common state in the form of InterpretationResult

objects. The roles of the Interpreter, ResultStore and InterpreterController in the
blackboard architecture for the analysis phase are shown in Figure 4.10.

65

CHAPTER 4. OBJECT DESIGN

ResultStore

InterpreterControl ler

Interpreter

+getResultsOfType()
+addResult()

<<Interface>>
Blackboard

+canContribute()
+updateBlackboard()

<<Interface>>
BlackboardExpert

+loop()
+getReadyExperts()

<<Interface>>
BlackboardSupervisor

controls

updates and
accesses

1..*

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.10: Interpreters as experts on a blackboard (UML class diagram)

Interpreters can add new results to the ResultStore by calling the ResultStore.add_-

result() method. Existing results are accessed with the ResultStore.get_results_-

of_type() method.

Interpreter order of execution Interpreters can depend on the results of other In-

terpreters to do their work. These dependencies must be resolved by determining an
order of execution that allows Interpreters to run only when all of their requirements are
satisfied. The requirements are stored in the requirements attribute of each interpreter
as a list of strings that represent the classnames of the required InterpretationResults.
The InterpreterController object determines the order of execution by calling each
interpreter’s can_contribute() method and then executes the interpreters that returned
the boolean value True. Listing 4.5 shows how an individual Interpreter determines
if its requirements are satisfied and Listing 4.6 shows how the InterpreterController

determines the order of execution of all Interpreters.

Listing 4.5: Interpreter order of execution (Interpreter)

class Interpreter(object):

#...

def can_contribute(self , session_journal , results):

for req in self.requirements:

if not results.get_results_of_type(req):

return False

return True

66

4.2. SUBSYSTEMS

Listing 4.6: Interpreter order of execution (InterpreterController)

class InterpreterController(object):

#...

def get_ready_interpreters(self):

result = []

for interp in self.interpreters:

if interp.can_contribute(self.events , self.results):

result.append(interp)

return result

def loop(self):

while True:

ready_interpreters = self.get_ready_interpreters ()

if ready_interpreters == []:

break # end the analysis phase

for interp in ready_interpreters:

interp.run(self.events , self.results)

We found that it is often required that an Interpreter only executes once during the
analysis phase. A ViewChangesInterpreter, for example, only aggregates all of the view
change events in the SessionJournal and does not depend on other Interpreters’ re-
sults. Whereas an AnalysisStatisticsInterpreter must run multiple times to update
the statistics during the analysis phase. Because we found that Interpreters are only
executed once in many cases, we added the ContributeOnceInterpreter subclass that
makes it simple to implement such a behavior.

4.2.3 Critique subsystem

The Critique subsystem creates a HTML document that summarizes the insights from
the analysis phase. This HTML document is called a Report. During the object design
some modifications were made to the subsystem. Now, the individual Sections are not
produced by a SectionGenerator object but instead exist as subclasses of the abstract
class Section. Therefore, the content of a section and the programming logic that creates
the content are both represented by the specializations of the class Section. Further-
more, the ReportGenerator was changed to represent a facade for the whole subsystem
(ReportGeneratorFacade). We believe that these changes simplify the Critique subsys-
tem, allow for more code reuse and thus make it easier to extend the system with new
section types.

67

CHAPTER 4. OBJECT DESIGN

-body : String
Element

-tit le : string
-header : string
-elements : Element[]
+__init__(title)
+add_element(e)
+generate_html(result_store) : string

<<abstract>>
Section

OverviewSectionNavigationPathSectionTouchHeatmapSectionViewDurationSectionUIGuidelineIssuesSection

-tit le : string
-header : string
-footer : string
-sections : Section[]
+add_section(s)
+generate_html(result_store) : string
+generate(result_store, filename)

Report
-reportFilename : string
-eventsFilename : string
-interpreters : string[]
-sections : string[]
+addInterpreter(i : string)
+addSection(s : string)
+setEventsFilename(s : string)
+setReportFilename(s : string)
+generateReport()

ReportGeneratorFacade

1..*

1..*

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

ReportGenerator facade We use the Facade pattern to hide implementation details of
the Analysis and the Critique package and to present a clean interface. The Report-

GeneratorFacade represents this facade object. It includes methods to configure both
the analysis phase and the critique phase. The developer configures the analysis phase
by specifying a file that contains the persisted Events that should be analyzed. And the
developer also specifies a list of Interpreters that should be run during the analysis
phase. The developer configures the critique phase by setting an output filename for the
report and adding a number of Sections. The report is then generated by calling the
generateReport() method.

Section HTML generation Sections are the building blocks of a Report and therefore
also consist of HTML code. This HTML code is in turn made up of many individual
components called HTML elements (or “tags”). To better reflect this structure in the
Critique subsystem we added the Element object to represent the building blocks of
individual Sections. This makes it easy to output textual information as a vertical list
in a Section. Listing 4.7 and Listing 4.8 show how the HTML code for a Section is
generated using the OverviewSection object as an example.

68

4.2. SUBSYSTEMS

Listing 4.7: Section HTML generation (Section)

class Section(object):

...

def generate_html(self , result_store):

s = self.header

if self.elements:

s += ’<ul type=" square">’

for e in self.elements:

s += ’%s’ % e.body

s += " "

return s

Listing 4.8: Section HTML generation (OverviewSection)

class OverviewSection(Section):

def __init__(self):

super(OverviewSection , self).__init__("Overview")

def generate_html(self , result_store):

overviews = result_store.get_results_of_type(’OverviewResult ’)

if overviews:

data = overviews [�]. data

self.add_element(Element("Session started at %s" % data[’sessionStart ’]))

self.add_element(Element("Session ended at %s" % data[’sessionEnd ’]))

self.add_element(Element("%d events were recorded" % data[’numEvents ’]))

return super(OverviewSection , self).generate_html(result_store)

69

CHAPTER 4. OBJECT DESIGN

70

5 Prototypical implementation

In this chapter we present the prototype of the muEvaluationFramework. We show how
the prototype handles the capture, analysis and critique phases.

5.1 Overview

We implemented a prototype during the writing of the thesis to fulfill several goals. We
wanted to improve the design of the framework in an iterative process. To do so, we
explored how different approaches work and what kinds of usability data can be gathered
on the Apple iOS platform. At the beginning of the thesis it was not clear how the collected
data could be analyzed and presented to the developer. We also used the prototype to
explore this area.

The prototypical implementation was tested with two open source iOS applications: Word-
press for iOS, a companion tool for the popular PHP-based content management system
Wordpress ; and PlainNote, a minimalist note-taking application. Wordpress for iOS was
more difficult to work with because it requires a steady internet connection to connect to a
Wordpress account. During development of the prototype this requirement was sometimes
difficult to fulfill and therefore we switched the host-application and worked with Plain-
Note instead. This offered the benefit of testing the prototype with an entirely different
application and also ensured that all setup steps were verified once more.

5.2 Capture support

The prototype provides support for capturing usability data inside an host-application,
to transmit these data over a wireless network connection and to store them into a file
for later analysis.

The CaptureLibrary is implemented in the Objective-C language because this is a re-
quirement to interface with host-applications on the iOS platform. The CaptureServer

is implemented in the Python language.

71

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

Network support The prototype of the CaptureServer announces its service via Zero-
conf and for this we used the pybonjour library [29]. The CaptureLibrary automatically
finds and connects to the CaptureServer as soon as it is available. Not requiring any
configuration, such as entering IP addresses and port numbers, proved very to be useful
during the development of the prototype because the system “just works” in almost every
network setup. The network connection uses standard sockets for TCP/IP-based data
transmission. The protocol is very simple and stateless, and Events are transmitted as
plaintext XML-strings. In the CaptureLibrary, the transmission of events is performed in
background threads using Apple’s Grand Central Dispatch, a framework which implements
parallel execution of tasks using thread pools [3]. This ensures that data transmission
does not hinder the performance of the host-application too much. Indeed, we found
that the subjective application performance was unchanged with the two applications we
tested.

Implemented sensors The prototype contains three sensor types:

• MFTouchInputSensor: a sensor that attaches to the sendEvent: method of the
UIWindow class via the method interception technique we described in Chapter 4
and captures UIEvents of the type UIEventTypeTouches. This allows the prototype
to track all kinds of finger gestures: quick taps, drag movements and scrolling.

• MFUIControlSensor: this sensor attaches to the UIControl class, a base class for
most user interface elements on iOS. By intercepting the sendAction:to:forEvent:
method the prototype can capture press events for all subclasses of UIControl, such
as UIButton or UISwitch.

• MFScreenSensor: this sensor is used to detect changes to what is displayed on the
mobile device’s screen. It attaches to UIWindow, UIViewController and UINaviga-

tionController to detect when UIViews are added or removed from the view stack.
This sensor also takes a screenshot and a snapshot of the complete view hierarchy of
the topmost UIWindow whenever the active view changes. Screenshots of a running
application are taken using the private framework UIGetScreenImage() function
or by iterating through the view hierarchy and rendering each view into a CGImage

(UIGetScreenImage is not available on the iOS simulator, for example). Screenshots
are compressed using the PNG format and then transmitted over the network. To
keep the host-application responsive the compression is performed in a background
thread.

72

5.3. ANALYSIS SUPPORT

5.3 Analysis support

Implemented interpreters

• OverviewInterpreter: calculates when the evaluation session started (the times-
tamp of the first Event), when it ended (the timestamp of the last Event). Addi-
tionally, it shows the number of Events that were recorded.

• ScreenshotInterpreter: searches the event stream for screenshot images and col-
lects them all in a ScreenshotResult list. Inside this list the screenshots are ordered
by the time they were taken at. This ordering is the used by other Interpreters

to reference the screenshots, e.g. the screenshot with index 3 maps to image data
A. This ensures that no duplicate images are stored in the report.

• TouchHeatmapInterpreter: gathers UserInputEvents and maps them to screenshot
images, therefore the interpreter requires the results of the ScreenshotInterpreter.
Each touch event is mapped to a screenshot image by comparing the timestamp of
the event to the timestamp of each screenshot and then selecting the last screenshot
that was taken before the event happened. This ensures that all events are mapped
to a screenshot and that touch events for different views do not all end up in the
same screenshot.

• ViewChangesInterpreter: iterates through all view change events, generates a
string representation of the view stack for each change and maps them to screenshot
indices. This interpreter requires the results of the OverviewInterpreter and the
ScreenshotInterpreter.

• ViewDurationInterpreter: gathers the timestamps of all view change events and
generates a statistic that shows for how long each view was active. This interpreter
requires the results of the OverviewInterpreter and the ViewChangesInterpreter.

• UIGuidelineChecker: performs a depth-first search on the nodes of each UIState

event and checks if the elements in the view hierarchy have dimensions smaller than
44 pixels. This heuristic is given in Apple’s iOS Human Interface Guidelines [6]
and used as a proof-of-concept that the prototype can detect usability problems in
a host-application.

73

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

5.4 Critique support

HTML reports The system generates reports in the form of a single HTML file that
references a number of screenshots that are stored as separate files in the PNG format.
The report document uses Cascading Style Sheets (CSS) to provide a consistent layout
for section headers. Reports are non-interactive in the prototype but individual Sections
can include JavaScript code to provide such functionality.

Implemented section types The report generator of the prototype supports the follow-
ing five section types:

• OverviewSection: provides general information about the session, that is the time
when the session started or ended, and the number of events that were recorded.

• ViewDurationSection: displays a table that contains the time the user spent on
each view in the host-application. The table is sorted by time and absolute as well
as relative timings are given for each view.

• NavigationPathSection: shows how a user navigated through the views of a host-
application. For each step, a timestamp is given and the state of the view stack is
printed out. Optionally, this section can show screenshots for each view change and
also indicate the kind of view change, i.e. whether the view is a regular view or a
modal view.

• TouchHeatmapsSection: shows screenshots of the host-application and draws col-
ored circles to indicate finger touches that were performed by the user. The visu-
alization of the touches is done in the browser via the HTML5 <canvas> element.
This lays the foundation for interactively changing the presentation of the touch
events and also allows the same set of screenshots to be used elsewhere.

• UIGuidelineIssuesSection: shows the detected violations against Apple’s iOS Hu-
man Interface Guidelines [6]. Violations are shown as a textual list that is typeset
in red font color.

74

5.4. CRITIQUE SUPPORT

Figure 5.1: A finished report document (I) (Prototype screenshot)

75

CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

Figure 5.2: A finished report document (II) (Prototype screenshot)

76

6 Future work

During the development process we encountered several interesting issues for the future
development of the present approach and we summarize them in the following sections.

6.1 Evaluation of a real product

To further improve the framework’s support for automated usability evaluations it should
be used in a test case with a real product and real test users. Although we used the
prototypical implementation of the framework with two applications that are available in
the Apple iOS AppStore1 (Wordpress for iOS and PlainNote), this would be a chance to
further refine the framework and to test it in a real world scenario. Based on the feedback
of the developers we could add new sensors and section types to further enhance the use
of the framework.

6.2 Web-based automated usability evaluation

The framework could be extended to include the abilities that were mentioned in the
visionary scenario. We could add a number of sensor and section types that enable
advanced functionality such as recording a video of the test user’s face or analyzing the
user’s speech for strong emotions. In additions to these improvements, the muEvaluation-
Framework could be made available as a web service. This means that developers who
want to test a host-application would simply upload their application binary to a server
and then select a few options, such as the number of test users, the active sensors and
sections, and tasks for the test users. The framework would now automatically distribute
the evaluation to a suitable group of test users, then wait for them to finish the evaluations,
and return the results (i.e. the finished reports) back to the developers.

1The iOS AppStore is an online service provided by Apple Inc. that allows users to purchase and
download applications (“Apps” for iOS-based devices).

77

CHAPTER 6. FUTURE WORK

6.3 Google Android support

Next to the iOS platform, Google’s Android is another important platform for the smart-
phone market. Because of the similarities in the usability concept of both platforms, it
makes much more sense to extend the muEvaluationFramework to the Android platform
than, for example, to Nokia’s Symbian. Android applications are mostly implemented
in the Java language. This means that the CaptureLibrary subsystem of the framework
would have to be ported to the Java language and be enabled to work with the Android
UI toolkit. Because Java provides very good support for reflection we are sure that this
is a viable option.

78

7 Conclusion

In this thesis we developed the muEvaluationFramework, an application-independent soft-
ware for remote usability evaluation on mobile platforms. The framework supports au-
tomation in the capture, analysis, and critique phases of an usability evaluation.

First, during the capture phase, the framework collects usability data such as user input
or application events while a test user interacts with the host-application. This data
collection is performed by an extensible set of software-based sensors. Second, during
the analysis phase, interpreter algorithms analyze the usability data that were collected
in the capture phase. This analysis step is performed automatically. It summarizes the
evaluation session and reveals usability issues in the analyzed application. Third, during
the critique phase, a report is generated that contains multiple sections with the results
of the analysis phase for the developer. Reports are generated in the HTML format and
can include interactive elements and embedded multimedia content.

We developed a prototypical implementation of the framework for the Apple iOS plat-
form. This prototype was tested with two open-source applications, Wordpress for iOS
and PlainNote that are available on the iOS AppStore. The prototypical implementa-
tion shows how usability data can be collected on the iOS platform and how it can be
automatically analyzed. We therefore believe that the prototype demonstrates that the
software architecture for the framework is viable, and that it can be used as a basis for
future research in the area of automated remote usability evaluation.

79

CHAPTER 7. CONCLUSION

80

Bibliography

[1] Andreasen, M., Nielsen, H., Schrøder, S., and Stage, J. What happened
to remote usability testing?: an empirical study of three methods. Proceedings of the
SIGCHI conference on Human factors in computing systems (2007), 1405–1414. 7

[2] Apple Inc. Coding guidelines for Cocoa. http://developer.apple.com/library/
mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.

pdf, May 2010. 55

[3] Apple Inc. Grand Central Dispatch (GCD) reference. http://developer.apple.

com/library/mac/documentation/Performance/Reference/GCD_libdispatch_

Ref/GCD_libdispatch_Ref.pdf, May 2010. 72

[4] Apple Inc. Objective-C runtime reference. http://developer.

apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/

ObjCRuntimeRef.pdf, June 2010. 59

[5] Apple Inc. Apple iOS platform homepage. http://www.apple.com/ios, Feb. 2011.
47

[6] Apple Inc. iOS human interface guidelines. http://developer.apple.

com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/

MobileHIG.pdf, Jan. 2011. 19, 20, 21, 73, 74

[7] Ash, M. MAObjCRuntime library. https://github.com/mikeash/MAObjCRuntime,
Sept. 2010. 59

[8] Au, F., Baker, S., Warren, I., and Dobbie, G. Automated usability testing
framework. AUIC ’08: Proceedings of the ninth conference on Australasian user
interface 76 (Jan 2008). 3, 7

[9] Balagtas-Fernandez, F., and Hussmann, H. A methodology and frame-
work to simplify usability analysis of mobile applications. ASE ’09: Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software Engineering
(Nov 2009). 1, 10

[10] Balbo, S. Automatic evaluation of user interface usability: Dream or reality?
Proceedings of the Queensland Computer-Human Interaction Symposium (1995). 7

81

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.pdf
http://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/GCD_libdispatch_Ref.pdf
http://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/GCD_libdispatch_Ref.pdf
http://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/GCD_libdispatch_Ref.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf
http://www.apple.com/ios
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
https://github.com/mikeash/MAObjCRuntime

Bibliography

[11] Bevan, N. Measuring usability as quality of use. Software Quality Journal 4, 2
(1995), 115–130. 3

[12] Bruegge, B., and Dutoit, A. H. Object-Oriented Software Engineering: Con-
quering Complex and Changing Systems. Prentice Hall, 2000. 48

[13] Buck, E. M., and Yacktman, D. A. Cocoa Design Patterns, 1st ed. Addison-
Wesley Professional, 2009. 57, 58

[14] Cheshire, S. Zero configuration networking. http://www.zeroconf.org, Feb. 2011.
58

[15] Duh, H., Tan, G., and Chen, V. Usability evaluation for mobile device: a compar-
ison of laboratory and field tests. MobileHCI ’06: Proceedings of the 8th conference
on Human-computer interaction with mobile devices and services (Sep 2006). 1

[16] Google Inc. Android platform homepage. http://www.android.com, Feb. 2011.
47

[17] Google Inc. Developer’s guide - google analytics for mobile. http://code.google.
com/mobile/analytics/docs, Feb. 2011. 11

[18] Hartson, H., Castillo, J., Kelso, J., and Neale, W. Remote evaluation:
the network as an extension of the usability laboratory. CHI ’96: Proceedings of the
SIGCHI conference on Human factors in computing systems: common ground (Apr
1996). 6

[19] Hipp, D. R. SQLite homepage. http://www.sqlite.org, Feb. 2011. 12

[20] Holzinger, A. Usability engineering methods for software developers. Communi-
cations of the ACM 48, 1 (Jan 2005). 3, 5

[21] Ivory, M., and Hearst, M. The state of the art in automating usability evaluation
of user interfaces. Computing Surveys (CSUR 33, 4 (Dec 2001). 5, 7, 8

[22] Kaikkonen, A., Kallio, T., Kekäläinen, A., Kankainen, A., and Cankar,
M. Usability testing of mobile applications: A comparison between laboratory and
field testing. Journal of Usability Studies 1, 1 (2005), 4–16. 1

[23] Kjeldskov, J., and Stage, J. New techniques for usability evaluation of mobile
systems. International Journal of Human-Computer Studies 60, 5-6 (2004), 599–620.
1

[24] Nielsen, J. Usability engineering. Academic Press, Boston, 1993. 3, 5

[25] Nokia. Symbian blog | Symbian at nokia. http://symbian.nokia.com, Feb. 2011.
47

[26] Object Management Group. UML superstructure specification, v.2.1.2. http:

//www.omg.org/spec/UML/2.1.2/Superstructure/PDF, Nov. 2007. 3

82

http://www.zeroconf.org
http://www.android.com
http://code.google.com/mobile/analytics/docs
http://code.google.com/mobile/analytics/docs
http://www.sqlite.org
http://symbian.nokia.com
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

Bibliography

[27] Paternò, F., Russino, A., and Santoro, C. Remote evaluation of mobile
applications. TAMODIA 2007 (2007), 155 – 169. 2, 7, 9

[28] Shneiderman, B., and Plaisant, C. Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Fifth Edition. Pearson Higher Education,
2009. 5

[29] Stawarz, C. The pybonjour library homepage. http://code.google.com/p/

pybonjour/, Feb. 2011. 72

[30] van Rossum, G., and Warsaw, B. Style guide for Python code. http://www.

python.org/dev/peps/pep-���8, Feb. 2011. 55

[31] Vasudeva, V. Software Architecture. Dorling Kindersley, 2009. 33

[32] Zhang, D., and Adipat, B. Challenges, methodologies, and issues in the usability
testing of mobile applications. International Journal of Human-Computer Interaction
18, 3 (2005), 293–308. 3, 4

83

http://code.google.com/p/pybonjour/
http://code.google.com/p/pybonjour/
http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008

	Introduction
	Problem statement
	Outline
	Document conventions
	Foundations
	Usability of mobile applications
	Usability evaluation
	Common usability evaluation activities
	Remote usability evaluation
	Automated usability testing

	Requirements specification
	Objectives
	Related work
	MultiDevice RemUsine
	EvaHelper Framework
	Google Analytics for Mobile
	Summary

	Scenarios
	Problem scenario
	Visionary scenario
	Demo scenario

	Functional requirements
	Capture phase support
	Analysis phase support
	Critique phase support

	Nonfunctional requirements
	Usability
	Reliability
	Security
	Privacy
	Performance
	Supportability
	Implementation requirements

	System models
	Use case model
	Object model
	Dynamic model

	User interface

	System design
	Design goals
	Subsystem decomposition
	Proposed software architecture
	Capture subsystem
	Analysis subsystem
	Critique subsystem

	Hardware/software mapping
	Persistent data management

	Object design
	Interface documentation guidelines
	Subsystems
	Capture subsystem
	Analysis subsystem
	Critique subsystem

	Prototypical implementation
	Overview
	Capture support
	Analysis support
	Critique support

	Future work
	Evaluation of a real product
	Web-based automated usability evaluation
	Google Android support

	Conclusion
	Bibliography

